Advertisement

Dopamine modulation in the basal ganglia locks the gate to working memory

  • Aaron J. GruberEmail author
  • Peter Dayan
  • Boris S. Gutkin
  • Sara A. Solla
Article

Abstract

The prefrontal cortex and basal ganglia are deeply implicated in working memory. Both structures are subject to dopaminergic neuromodulation in a way that exerts a critical influence on the proper operation of working memory. We present a novel network model to elucidate the role of phasic dopamine in the interaction of these two structures in initiating and maintaining mnemonic activity. We argue that neuromodulation plays a critical role in protecting memories against both internal and external sources of noise. Increases in cortical gain engendered by prefrontal dopamine release help make memories robust against external distraction, but do not offer protection against internal noise accompanying recurrent cortical activity. Rather, the output of the basal ganglia provides the gating function of stabilization against noise and distraction by enhancing select memories through targeted disinhibition of cortex. Dopamine in the basal ganglia effectively locks this gate by influencing the stability of up and down states in the striatum. Dopamine’s involvement in affective processing endows this gating with specificity to motivational salience. We model a spatial working memory task and show that these combined effects of dopamine lead to superior performance.

Keywords

Salience Spiny neuron Phasic release Attention 

References

  1. Alexander, G. E. and Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci, 13(7):266–271.Google Scholar
  2. Beiser, D. G. and Houk, J. C. (1998). Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol, 79:3168–3188.Google Scholar
  3. Beiser, D. G., Hua, S. E., and Houk, J.C. (1997). Network models of the basal ganglia. Curr Opin Neurobiol, 7(2):185–190.Google Scholar
  4. Braver, T. S. and Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: the gating model Prog Brain Res, 121:327–349.Google Scholar
  5. Brunel, N. and Wang, X. J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comp Neurosci, 11(1):63–85.Google Scholar
  6. Camperi, M. and Wang, X. J. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J Comput Neurosci, 5(4):383–405.Google Scholar
  7. Chafee, M. and Goldman-Rakic, P. (1998). Matching patterns of activity in primate prefrontal area 8a and pariental area 7ip neurons during a spatial working memory task. J Neurophysiol, 79:2919–2940.Google Scholar
  8. Cohen, J. D., Braver, T. S., and Brown, J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol, 12(2):223–229.Google Scholar
  9. Colby, C. L., Duhamel, J. R., and Goldberg, M. E. (1996). Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol, 76(5):2841–2852.Google Scholar
  10. Compte, A., Brunel, N., Goldman-Rakic, P. S., and Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex, 10(9):910–923.Google Scholar
  11. Costa, A., Peppe, A., Dell’ Agnello, G., Carlesimo, G. A., Murri, L., Bonuccelli, U., and Caltagirone, C. (2003). Dopaminergic modulation of visual-spatial working memory in parkinson’s disease. Dement Geriatr Cogn Disord, 15(2):55–66.Google Scholar
  12. Destexhe, A., Bal, T., McCormick, D. A., and Sejnowski, T. J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol, 76(3):2049–70.Google Scholar
  13. Djurfeldt, M., Ekeberg, O., and Graybiel, A. (2001). Cortex-basal ganglia interaction and attractor states. Neurocomputing, 38:537–579.Google Scholar
  14. Dreher, J. C., Guigon, E., and Burnod, Y. (2002). A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J Cog Neurosci, 14(6):853–865.Google Scholar
  15. Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol, 83(3):1733–1750.Google Scholar
  16. Frank, M. J., Loughry, B., and O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cog, Affect & Behav Neurosci, 1(2):137–160.Google Scholar
  17. Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorso-lateral prefrontal cortex. J Neurophysiol, 61(2):331–349.Google Scholar
  18. Fuster, J. (1995). Memory in the cerebral cortex. MTT Press, Cambridge, MA.Google Scholar
  19. Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3):477–485.Google Scholar
  20. Gonon, F. (1997). Prolonged and extrasynaptic excitatory action of dopamine mediated by Dl receptors in the rat striatum in vivo. J Neurosci, 17(15):5972–5978.Google Scholar
  21. Goto, Y. and O’Donnell, P. (2001). Synchronous activity in the hippocampus and nucleus accumbens in vivo. J Neurosci, 21(4):1529–2401.Google Scholar
  22. Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neurosci, 41(1): 1–24.Google Scholar
  23. Graybiel, A. M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Cur Opin Neurobiol, 5:733–741.Google Scholar
  24. Groenewegen, H. J., Wright, C. I., and Uylings, H. B. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. J Psychopharmacol, 11(2):99–106.Google Scholar
  25. Gruber, A. J., Solla, S. A., Surmeier, D. J., and Houk, J. C. (2003). Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol, 90(2): 1095–1114.Google Scholar
  26. Gurney, K., Prescott, T. J., and Redgrave, P. (2001). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern, 84:411–423.Google Scholar
  27. Gutkin, B. S., Laing, C. R., Colby, C. L., Chow, C. C., and Ermentrout, G. B. (2001). Turning on and off with excitation: the rote of spike-timing and synchrony in sustained neural activity. J Comput Neurosci, 11(2):121–134.Google Scholar
  28. Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat, 26(4):317–330.Google Scholar
  29. Hansel, D. and Mato, G. (2001). Existence and stability of persistent states in large neuronal networks. Phys Rev Lett, 86(18):4175–4178.Google Scholar
  30. Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A., and Galarraga, E. (1997). D1 receptor activation enhances evoked discharge in entotriatal medium spiny neurons by modulating an L-type Ca 2+ conductance. J Neurosci, 17(9):3334–3342.Google Scholar
  31. Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K., and Lu, X. (1998). Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learing. Neurobiol Learn Mem, 70(1/2):137–149.Google Scholar
  32. Kalivas, P. W., Jackson, D., Romanidies, A., Wyndham, L., and Duffy, P. (2001). Involvement of pallidothalamic circuitry in working memory. Neurosci, 104(1):129–136.Google Scholar
  33. Kawagoe, R., Takikawa, Y., and Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci, 1(5):411–416.Google Scholar
  34. Kawagoe, R., Takikawa, Y., and Hikosaka, O. (2004). Reward-predicting activity of dopamine and caudate neurons - a possible mechanism of motivational control of saccadic eye movement. J Neurophysiol, 91(2):1013–1024.Google Scholar
  35. Kermadi, I. and Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. J Neurophysiol, 74(3):911–933.Google Scholar
  36. Kiyatkin, E. A. and Rebec, G. V. (1996). Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol, 75(1):142–153.Google Scholar
  37. Koos, T. and Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by gabaergic interneurons. Nat Neurosci, 2(5):467–472.Google Scholar
  38. Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., and Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. J Neurosci, 15(1 Pt2):928–41.Google Scholar
  39. Laing, C. R. and Chow, C. C. (2001). Stationary bumps in networks of spiking neurons. Neural Comput, 13(7): 1473–1494.Google Scholar
  40. Lange, K. W., Robbins, T. W., Marsden, C. D., James, M., Owen, A. M., and Paul, G. M. (1992). L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacol, 107(2–3):394–404.Google Scholar
  41. Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., and Owen, A. M. (2004). Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. Eur J Neurosci, 19(3):755–760.Google Scholar
  42. Lidow, M. S., Williams, G. V., and Goldman-Rakic, P. S. (1998). The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacologic Sci, 19(4): 136–140.Google Scholar
  43. Lynd-Balta, E. and Haber, S. N. (1994). The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neurosci, 59(3):625–640.Google Scholar
  44. Menon, V., Anagnoson, R. T., Glover, G. H., and Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. Neuroreport, 11(16):3641–3645.Google Scholar
  45. Middleton, F. A. and Strick, P. L. (2002). Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex, 12(9):926–935.Google Scholar
  46. Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol, 50(4):381–325.Google Scholar
  47. Miyoshi, E., Wietzikoski, S., Camplessei, M., Silveira, R., Takahashi, R. N., and Da Cunha, C. (2002). Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull, 58(7):41–47.Google Scholar
  48. Muller, U., von Cramon, D. Y., and Pollmann, S. (1998). Dl- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci, 18(7):2720–2728.Google Scholar
  49. Nakamura, K. and Hikosaka, O. (2004). Reward-dependent saccade bias is attenuated by local application of dopamine antagonists in the primante caudate nucleus. In Soci Neurosci Abstr, San Diego, CA.Google Scholar
  50. Nicola, S. M., Surmeier, D. J., and Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci, 23:185–215.Google Scholar
  51. Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P., Lange, K. W., and Robbins, T. W. (1992). Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain, 115(6):1727–1751.Google Scholar
  52. Plenz, D. (2003). When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci, 26(8):436–443.Google Scholar
  53. Postle, B. R. and D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Cog Brain Res, 8(2): 107–115.Google Scholar
  54. Powell, K. D. and Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J Neurophysiol, 84(1):301–10.Google Scholar
  55. Roitman, M. F., Stuber, G. D., Phillips, P. E., Wightman, R. M., and Carelli, R. M. (2004). Dopamine operates as a subsecond modulator of food seeking. J Neurosci, 24(6):1265–1271.Google Scholar
  56. Romanides, A. J., Duffy, P., and Kalivas, P. W. (1999). Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neurosci, 92(1):97–106.Google Scholar
  57. Sawaguchi, T. and Goldman-Rakic, P. S. (1994). The role of Dl-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol, 71(2):515–528.Google Scholar
  58. Schultz, W. (1998). Predictive reward signal of dopamine neurons. J Neurophysiol, 80(1):1–17.Google Scholar
  59. Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci, 13(3):900–913.Google Scholar
  60. Servan-Schreiber, D., Carter, C. S., Bruno, R. M., and Cohen, J. D. (1998). Dopamine and the mechanisms of cognition: Part II. D-amphetamine effects in human subjects performing a selective attention task. Biol Psychiatry, 43(10):723–729.Google Scholar
  61. Servan-Schreiber, D., Printz, H., and Cohen, J. D. (1990). A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science, 249:892–895.Google Scholar
  62. Seung, H. S. (1996). How the brain keeps the eyes still. Proc Natl Acad Sci USA, 93(23):13339–13344.Google Scholar
  63. Tepper, J. M., Koos, T., and Wilson, C. J. (2004). Gabaergic microcircuits in the neostriatum. Trends Neurosci, 27(11): 662–9.Google Scholar
  64. Terman, D., Rubin, J. E., Yew, A. C., and Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci, 22(7):2963–2976.Google Scholar
  65. Vergara, R., Rick, C., Hernandez-Lopez, S., Laville, J. A., Guzman, J. N., Galarraga, E., Surmeier, D. J., and Bargas, J. (2003). Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol, 553(Pt 1):169–182.Google Scholar
  66. Watanabe, M., Hikosaka, K., Sakagami, M., and Shirakawa, S. (2002). Coding and monitoring of motivational context in the primate prefrontal cortex. J Neurosci, 22(6):2391–2400.Google Scholar
  67. Williams, G. V. and Goldman-Rakic. P. S. (1995). Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature, 376(6541):572–575.Google Scholar
  68. Wilson, C. J. and Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci, 16(7):2397–2410.Google Scholar
  69. Zahrt, J., Taylor, J. R., Mathew, R. G., and Arnsten, A. F. (1997). Supranormal stimulation of Dl dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 17(21):8528–8535.Google Scholar
  70. Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci, 16(6):2112–2126.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Aaron J. Gruber
    • 1
    Email author
  • Peter Dayan
    • 2
  • Boris S. Gutkin
    • 3
  • Sara A. Solla
    • 4
  1. 1.Biomedical EngineeringNorthwestern UniversityChicagoUSA
  2. 2.Gatsby Computational Neuroscience UnitUniversity College LondonUK
  3. 3.Recepteurs et Cognition, Departement de NeuroscienceInstitut PasteurPasisFrance
  4. 4.PhysiologyNorthwestern UniversityChicagoUSA

Personalised recommendations