Journal of Computational Neuroscience

, Volume 18, Issue 1, pp 5–24 | Cite as

Computational Model of Touch Sensory Cells (T Cells) of the Leech: Role of the Afterhyperpolarization (AHP) in Activity-Dependent Conduction Failure

  • Enrico Cataldo
  • Marcello Brunelli
  • John H. Byrne
  • Evyatar Av-Ron
  • Yidao Cai
  • Douglas A. Baxter
Article

Abstract

Bursts of spikes in T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP. Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive fields to the soma and beyond. More importantly, simulations also suggest that the AHP could modulate, under some circumstances, transmission from the soma to the synaptic terminals, suggesting that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP.

action potential propagation neuronal plasticity branch point failure conduction reliability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Enrico Cataldo
    • 1
  • Marcello Brunelli
    • 1
  • John H. Byrne
    • 2
  • Evyatar Av-Ron
    • 2
  • Yidao Cai
    • 2
  • Douglas A. Baxter
    • 2
  1. 1.Dipartimento di Fisiologia and BiochimicaUniversità di PisaPisaItaly
  2. 2.Department of Neurobiology and Anatomy, Center for Computational BiomedicineThe University of Texas-Houston Medical SchoolHoustonUSA

Personalised recommendations