Advertisement

Journal of Computational Neuroscience

, Volume 20, Issue 2, pp 111–136 | Cite as

Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex

  • David J. Klein
  • Jonathan Z. Simon
  • Didier A. Depireux
  • Shihab A. Shamma
Article

Abstract

The spectrotemporal receptive field (STRF) provides a versatile and integrated, spectral and temporal, functional characterization of single cells in primary auditory cortex (AI). In this paper, we explore the origin of, and relationship between, different ways of measuring and analyzing an STRF. We demonstrate that STRFs measured using a spectrotemporally diverse array of broadband stimuli—such as dynamic ripples, spectrotemporally white noise, and temporally orthogonal ripple combinations (TORCs)—are very similar, confirming earlier findings that the STRF is a robust linear descriptor of the cell. We also present a new deterministic analysis framework that employs the Fourier series to describe the spectrotemporal modulations contained in the stimuli and responses. Additional insights into the STRF measurements, including the nature and interpretation of measurement errors, is presented using the Fourier transform, coupled to singular-value decomposition (SVD), and variability analyses including bootstrap. The results promote the utility of the STRF as a core functional descriptor of neurons in AI.

Keywords

spectrotemporal receptive field modulation transfer function auditory cortex ripple variability singular-value decomposition ferret 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aertsen A, Johannesma P (1981a) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biological Cybernetics 42: 145–156.CrossRefPubMedGoogle Scholar
  2. Aertsen A, Johannesma P (1981b) The spectro-temporal receptive field: A functional characteristic of auditory neurons. Biological Cybernetics 42: 133–143.CrossRefPubMedGoogle Scholar
  3. Aertsen A, Johannesma P, Hermes D (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli. Biological Cybernetics 38: 235–248.CrossRefGoogle Scholar
  4. Atlas L, Shamma S (2003) Joint acoustic and modulation frequency. EURASIP Journal of Appllied Signal Processing 2003(7): 668–675.CrossRefGoogle Scholar
  5. Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8: 1185–1202.CrossRefPubMedGoogle Scholar
  6. Berry M, Meister M (1998) Refractoriness and neural precision. Journal of Neuroscience 18(6): 2200–2211.Google Scholar
  7. Boyd S, Tang Y, Chua L (1983) Measuring Volterra kernels. IEEE Transactions on Circuits and Systems 30: 571–577.CrossRefGoogle Scholar
  8. Carandini M, Heeger D, Senn W (2002) A synaptic explanation of suppression in visual cortex. Journal of Neuroscience 22(22): 10053–10065.PubMedGoogle Scholar
  9. Chance F, Nelson S, Abbott L (1998) Synaptic depression and the temporal response characteristics of VI cells. Journal of Neuroscience 18(12): 4785–4799.PubMedGoogle Scholar
  10. Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. Journal of the Acoustical Society of America 106(5): 2719–2732.CrossRefPubMedGoogle Scholar
  11. Cohen L (1995) Time-Frequency Analysis. Prentice-Hall.Google Scholar
  12. de Boer E, de Jongh H (1978) On cochlear encoding: Potentialities and limitations of the reverse-correlation technique. Journal of the Acoustical Society of America 63: 115–135.CrossRefPubMedGoogle Scholar
  13. deCharms R, Blake D, Merzenich M (1998) Optimizing sound features for cortical neurons. Science 280: 1439–1443.CrossRefGoogle Scholar
  14. Denham S (2001) Cortical synaptic depression and auditory perception. In Greenberg, S Slaney, M eds. Computational Models of Auditory Function, NATO ASI Series, IOS Press, Amsterdam.Google Scholar
  15. Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J Neurophysiol 85(3): 1220–1234.PubMedGoogle Scholar
  16. Efron B, Tibshirani B (1993) An introduction to the bootstrap, Chapman and Hall, New York.Google Scholar
  17. Eggermont J (1993) Wiener and Volterra analyses applied to the auditory system. Hearing Research 66: 177–201.CrossRefPubMedGoogle Scholar
  18. Eggermont J, Aertsen A, Hermes D, Johannesma P (1981) Spectro-temporal characterization of auditory neurons: Redundant or necessary? Hearing Research 5: 109–121.CrossRefPubMedGoogle Scholar
  19. Eggermont J, Aertsen A, Johannesma P (1983a) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hearing Research 10: 191–202.CrossRefPubMedGoogle Scholar
  20. Eggermont J, Johannesma P, Aertsen A (1983b) Reverse-correlation methods in auditory research. Quarterly Review of Biophysics 16: 341–414.CrossRefGoogle Scholar
  21. Elhilali M, Klein D, Fritz J, Simon J, Shamma S (2004) The enigma of cortical responses: slow yet precise. In Auditory signal processing, psychoacoustics, and models, (in press), Springer Verlag, New York.Google Scholar
  22. Epping W, Eggermont J (1985) Single-unit characteristics in the auditory midbrain of the immobilized grassfrog. Hearing Research 18: 223–243.CrossRefPubMedGoogle Scholar
  23. Escabí MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. Journal of Neuroscience 22(10): 4114–4131.PubMedGoogle Scholar
  24. Evans EF (1979) Single-unit studies of mammalian cochlear nerve. In HA Beagley, ed. Auditory investigations: the scientific and technological basis, Vol 68. Clarendon, Oxford, UK, pp 324–367.Google Scholar
  25. Hansen P (1998) Rank-deficient and discrete ill-posed problems. SIAM monographs on mathematical modeling, Philadelphia.Google Scholar
  26. Heil P (1997) Auditory cortical onset responses revisited. I. First-spike timing. Journal of Neurophys 77: 2616–16641.Google Scholar
  27. Hermes D, Aertsen A, Johannesma P, Eggermont J (1981) Spectro-temporal characteristics of single units in the midbrain of the lightly anaesthetised grass frog (Rana temporaria L.) investigated with noise stimuli. Hearing Research 5: 147–178.CrossRefPubMedGoogle Scholar
  28. Hermmansky H (1999) Mel cepstrum, deltas, double-deltas. What else is new? In Proceedings of Robust Speech Recognition in Adverse Conditions, Tampere, Finland.Google Scholar
  29. Johannesma P, Eggermont J (1983) Receptive fields of auditory neurons in the frog’s midbrain as functional elements for acoustic communication. In J Ewert, R Capranica, D Ingle, eds. Advances in Vertebrate Neuroethology, Plenum, New York, pp. 901–910.Google Scholar
  30. Keller C, Takahashi T (2000) Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl’s inferior colliculus. Journal of Neurophysiology 84: 2638–2650.Google Scholar
  31. Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: Optimizing stimulus design. Journal of Computational Neuroscience 9(1): 85–111.CrossRefPubMedGoogle Scholar
  32. Klein DJ, König PK, Körding KP (2003) Sparse spectrotemporal coding of sounds. EURASIP Journal of Applied Signal Processing 2003(7): 659–667.CrossRefGoogle Scholar
  33. Kleinschmidt M (2002) Methods for capturing spectro-temporal modulations in automatic speech recognition. Acustica United With Acta Acustica 88: 416–422.Google Scholar
  34. Kleinschmidt M, Gelbart D (2002) Improving word accuracy with Gabor feature extraction. In Proc. Int. Conf. on Spoken Language Processing (ICSLP).Google Scholar
  35. Kowalski N, Depireux D, Shamma S (1996a) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology 76: 3503–3523.PubMedGoogle Scholar
  36. Kowalski N, Depireux D, Shamma S (1996b) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. Journal of Neurophysiology 76: 3524–3534.PubMedGoogle Scholar
  37. Kvale M, Schreiner C, Bonham B (1998) Spectro-temporal and adaptive response to AM stimuli in the inferior colliculus. Abstracts of the Twenty-first ARO Mid-Winter Meeting.Google Scholar
  38. Miller LM, Escabí MA, Read HL, Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32: 151–160.CrossRefPubMedGoogle Scholar
  39. Miller LM, Escabí MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87(1): 516–527.PubMedGoogle Scholar
  40. Moller A (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. Journal of the Acoustical Society of America 62: 135–142.CrossRefPubMedGoogle Scholar
  41. Nadeu C, Macho D, Hernando J (2001) Time and frequency filtering of filter-bank energies for robust HMM speech recognition. Speech Communication 34(1): 93–114.CrossRefGoogle Scholar
  42. Oppenheim A, Schafer R (1989) Discrete Time Signal Processing. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  43. Oram M, Wiener M, Lestienne R, Richmond B (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses. Journal of Neurophys-iology 81: 3021–3033.Google Scholar
  44. Papoulis A (1962) The Fourier Integral and its Applications. McGraw-Hill.Google Scholar
  45. Phillips D, Hall S, Boehnke S (2002) Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research 167(1–2): 192–205.CrossRefPubMedGoogle Scholar
  46. Politis D (1998) Computer-intensive methods in statistical analysis. IEEE Signal Processing Magazine 15: 39–54.CrossRefGoogle Scholar
  47. Rees A, Moller A (1983) Responses of neurons in the inferior colliculus of rats to AM and FM tones. Hearing Research 10: 301–330.CrossRefPubMedGoogle Scholar
  48. Reid R, Victor J, Shapley R (1992) Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex. Vis Neurosci 9: 39–45.CrossRefPubMedGoogle Scholar
  49. Rutkowski RG, Shackleton TM, Schnupp JWH, Wallace MN, Palmer AR (2002) Spectrotemporal receptive field properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig. Audiology and NeuroOtology 7(4): 214–227.CrossRefPubMedGoogle Scholar
  50. Schafer M, Rubsamen R, Dorrscheidt G, Knipschild M (1992) Setting complex tasks to single units in the avian forebrain. II: Do we really need natural stimuli to describe neuronal response characteristics? Hearing Research 57: 231–244.CrossRefPubMedGoogle Scholar
  51. Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems, Wiley Sons, New York.Google Scholar
  52. Schreiner C, Calhoun B (1995) Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions. Journal of Auditory Neuroscience 1: 39–61.Google Scholar
  53. Sen K, Theunissen F, Doupe A (2001) Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology 86: 1445–1458.PubMedGoogle Scholar
  54. Shadlen M, Newsome W (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience 18: 3870–3896.PubMedGoogle Scholar
  55. Shamma S, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. Journal of Neurophysiology 69: 367–383.PubMedGoogle Scholar
  56. Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally rippled spectra. Journal of Auditory Neuroscience 1: 233–254.Google Scholar
  57. Simon J, Depireux D, Klein D, Shamma S (subm) Temporal symmetry in primary auditory cortex: Implications for cortical connectivity. Journal of Neuroscience.Google Scholar
  58. Smolders J, Aertsen A, Johannesma P (1979) Neural representation of the acoustic biotope. Biological Cybernetics 35: 11–20.CrossRefPubMedGoogle Scholar
  59. Spekreijse H, Oosting H (1970) Linearizing: A method for analysing and synthesizing nonlinear systems. Kybernetik 7: 22–31.CrossRefPubMedGoogle Scholar
  60. Stewart G (1991) Purturbation theory for the singular value decomposition. In R Vaccaro, ed., SVD and Signal Processing II, Elsevier Science Publisher, pp. 99–109.Google Scholar
  61. Stewart G (1993) Determining rank in the presence of error. In MS Moonen, GH Golub, BLR DeMoor, eds. Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publishers, Dordrecht, pp. 275–292.Google Scholar
  62. Sutter E (1992) A deterministic approach to nonlinear systems analysis. In R Pinter, B Nabet, eds., Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, CRC Press, Boca Raton, FL, pp. 171–220.Google Scholar
  63. Swerup C (1978) On the choice of noise for the analysis of the peripheral auditory system. Biological Cybernetics 29: 97–104.CrossRefPubMedGoogle Scholar
  64. Theunissen F, Sen K, Doupe A (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Journal of Neuroscience 20: 2315–2331.PubMedGoogle Scholar
  65. Valois RD, Valois KD (1990) Spatial Vision, Oxford University Press, New York.Google Scholar
  66. Versnel H, Zwiers M, van Opstal A (2002) Spectro-temporal response fields in the inferior colliculus of awake monkey. Journal Revista de Acustica 33: 84-87985-06-8.Google Scholar
  67. Victor J, Knight B (1979) Nonlinear analysis with an arbitrary stimulus ensemble. Quarterly of Applied Mathematics 37: 113–136.Google Scholar
  68. Victor J, Shapley R (1980) A method of nonlinear analysis in the frequency domain. Biophysical Journal 29: 459–484.CrossRefPubMedGoogle Scholar
  69. Wickesberg R, Geisler C (1984) Artifacts in Wiener kernels estimated using Gaussian white noise. IEEE Transactions on Biomedical Engineering 31(6): 454–461.CrossRefPubMedGoogle Scholar
  70. Yeshurun Y, Wollberg Z, Dyn N (1987) Identification of MGB cells by Volterra kernels. II. Towards a functional classification of cells. Biological Cybernetics 56: 203–208.CrossRefGoogle Scholar
  71. Young E (1998) What’s the best sound? Science 280: 1402–1403.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • David J. Klein
    • 1
    • 2
    • 5
  • Jonathan Z. Simon
    • 2
    • 3
  • Didier A. Depireux
    • 1
    • 4
  • Shihab A. Shamma
    • 1
    • 2
  1. 1.Institute for Systems ResearchUniversity of MarylandCollege ParkUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Department of BiologyUniversity of MarylandCollege ParkUSA
  4. 4.Department of Anatomy and NeurobiologyUniversity of MarylandBaltimoreUSA
  5. 5.Institute for NeuroinformaticsUniversity/ETH ZürichZürichSwitzerland

Personalised recommendations