Journal of Computational Neuroscience

, Volume 18, Issue 3, pp 323–331 | Cite as

Short-Term Synaptic Plasticity Orchestrates the Response of Pyramidal Cells and Interneurons to Population Bursts

  • Magnus J. E. Richardson
  • Ofer Melamed
  • Gilad Silberberg
  • Wulfram Gerstner
  • Henry Markram
Article

Abstract

The synaptic drive from neuronal populations varies considerably over short time scales. Such changes in the pre-synaptic rate trigger many temporal processes absent under steady-state conditions. This paper examines the differential impact of pyramidal cell population bursts on post-synaptic pyramidal cells receiving depressing synapses, and on a class of interneuron that receives facilitating synapses. In experiment a significant shift of the order of one hundred milliseconds is seen between the response of these two cell classes to the same population burst. It is demonstrated here that such a temporal differentiation of the response can be explained by the synaptic and membrane properties without recourse to elaborate cortical wiring schemes. Experimental data is first used to construct models of the two types of dynamic synaptic response. A population-based approach is then followed to examine analytically the temporal synaptic filtering effects of the population burst for the two post-synaptic targets. The peak-to-peak delays seen in experiment can be captured by the model for experimentally realistic parameter ranges. It is further shown that the temporal separation of the response is communicated in the outgoing action potentials of the two post-synaptic cells: pyramidal cells fire at the beginning of the burst and the class of interneuron receiving facilitating synapses fires at the end of the burst. The functional role of such delays in the temporal organisation of activity in the cortical microcircuit is discussed.

Keywords

dynamic synapses population bursts interneurons cortical microcircuit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275: 220–224.Google Scholar
  2. Burkitt AN, Meffin H, Grayden DB (2003) Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. Biol. Cybern. 89: 119–125.Google Scholar
  3. Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35: 773–782.Google Scholar
  4. DeFelipe J, Elston GN, Fujita I, Fuster J, Harrison KH, Hof PR, Kawaguchi Y, Martin KAC, Rockland KS, Thomson AM, Wang SSH, White EL, Yuste R (2002) Neocortical circuits: Evolutionary aspects and specificity versus non-specificity of synaptic connections. Remarks, main conclusions and general comments and discussion. J. Neurocytol. 31: 387–416.Google Scholar
  5. Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4: 739–751.Google Scholar
  6. Fellous J-M, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122: 811–829.Google Scholar
  7. Wang Y, Markram H (2000) Organizing principles for a diversity of gabaergic interneurons and synapses in the neocortex. Science 287: 273–278.Google Scholar
  8. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J. Neurocytology 31: 277–287.Google Scholar
  9. Liaw J-S, Berger TW (1996) Dynamic synapses: a new conceptof neural Representation and Computation. Hippocampus 6: 591–600.Google Scholar
  10. Markram H, Wang Y, Tsodyks M (1998) Differential signalling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95: 5323–5328.Google Scholar
  11. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5: 793–807.Google Scholar
  12. Melamed O, Silberberg G, Markram H, Gerstner W, Richardson MJE (2005) Subthreshold cross-correlations between cortical neurons: A reference model with static synapses. Neurocomputing (in press).Google Scholar
  13. Richardson, MJE (2004) Effects of synaptic conductance on the voltagedistribution and Firing Rate of Spiking Neurons. Phys. Rev. E 69: art-no 051918.Google Scholar
  14. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3: 1027–1034.Google Scholar
  15. Shu YS, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423: 288–293.Google Scholar
  16. Silberberg G, Wu CZ, Markram H (2004) Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J. Physiol-London 556: 19–27.Google Scholar
  17. Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev. 26: 113–135.Google Scholar
  18. Stroeve S, Gielen S (2001) Correlation between uncoupled conductance-based integrate-and-fire neurons due to common and synchronous presynaptic firing. Neural. Comput. 13: 2005–2029.Google Scholar
  19. Thomson AM, Deuchars J, West DC (1993) Single axon excitatory postsynaptic potentials inneocortical interneurons Exhibit Pronounced Paired Pulse Facilitation. Neuroscience 54: 347–360.Google Scholar
  20. Thomson AM, Deuchars J (1994) Temporal and spatial properties of local circuits in neucortex. Trends in Neurosciences 17: 119–126.Google Scholar
  21. Tsodyks M, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. P. Natl. Acad. Sci. USA 94: 719–723.Google Scholar
  22. Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. neuralcomput. 10: 821–835.Google Scholar
  23. Wilson CJ and Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci. 16: 2397–2410.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Magnus J. E. Richardson
    • 1
  • Ofer Melamed
    • 2
    • 3
  • Gilad Silberberg
    • 4
  • Wulfram Gerstner
    • 5
  • Henry Markram
    • 6
  1. 1.École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Computational NeuroscienceSchool of Computer and Communication Sciences and Brain Mind InstituteLausanneSwitzerland
  2. 2.École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Neural MicrocircuitryBrain Mind InstituteLausanneSwitzerland
  3. 3.Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
  4. 4.École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Neural MicrocircuitryBrain Mind InstituteLausanneSwitzerland
  5. 5.École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Computational NeuroscienceSchool of Computer and Communication Sciences and Brain Mind InstituteLausanneSwitzerland
  6. 6.École Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Neural MicrocircuitryBrain Mind InstituteLausanneSwitzerland

Personalised recommendations