Journal of Computational Neuroscience

, Volume 18, Issue 3, pp 287–295 | Cite as

Beyond Two-Cell Networks: Experimental Measurement of Neuronal Responses to Multiple Synaptic Inputs

  • Theoden I. NetoffEmail author
  • Corey D. Acker
  • Jonathan C. Bettencourt
  • John A. White


Oscillations of large populations of neurons are thought to be important in the normal functioning of the brain. We have used phase response curve (PRC) methods to characterize the dynamics of single neurons and predict population dynamics. Our past experimental work was limited to special circumstances (e.g., 2-cell networks of periodically firing neurons). Here, we explore the feasibility of extending our methods to predict the synchronization properties of stellate cells (SCs) in the rat entorhinal cortex under broader conditions. In particular, we test the hypothesis that PRCs in SCs scale linearly with changes in synaptic amplitude, and measure how well responses to Poisson process-driven inputs can be predicted in terms of PRCs. Although we see nonlinear responses to excitatory and inhibitory inputs, we find that models based on weak coupling account for scaling and Poisson process-driven inputs reasonably accurately.


oscillations entorhinal cortex phase response curve dynamic clamp weak coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker CD, Kopell N, White JA (2003) Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. J. Comput. Neurosci. 15: 71–90.Google Scholar
  2. Alonso A, Llina’s RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342: 175–177.Google Scholar
  3. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J. Neurophysiol. 70: 128–143.Google Scholar
  4. Berretta N, Jones RS (1996) A comparison of spontaneous EPSCs in layer II and layer IV-V neurons of the rat entorhinal cortex in vitro. J. Neurophysiol. 76: 1089–1100.Google Scholar
  5. Bland BH, Colom LV (1993) Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Progress In Neurobiology 41: 157–208.Google Scholar
  6. Canavier CC, Butera RJ, Dror RO, Baxter DA, Clark JW, Byrne JH (1997) Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biol. Cybern. 77: 367–380.Google Scholar
  7. Charpak S, Pare D, Llinas R (1995) The entorhinal cortex entrains fast CA1 hippocampal oscillations in the anaesthetized guinea-pig: Role of the monosynaptic component of the perforant path. Eur. J. Neurosci. 7: 1548–1557.Google Scholar
  8. Chow CC, White JA, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J. Comput. Neurosci. 5: 407–420.Google Scholar
  9. Chrobak JJ, Buzsa’ki G (1998) Gamma oscillations in the entorhinal cortex of the freely behaving rat. J. Neurosci. 18: 388–398.Google Scholar
  10. Demir SS, Butera RJ, Jr., DeFranceschi AA, Clark JW, Jr., Byrne JH (1997) Phase sensitivity and entrainment in a modeled bursting neuron. Biophys. J. 72: 579–594.Google Scholar
  11. Dorval AD, Christini DJ, White JA (2001) Real-Time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells. Ann. Biomed. Eng. 29: 897–907.Google Scholar
  12. Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural. Comput. 8: 979–1001.Google Scholar
  13. Fries P, Roelfsema PR, Engel AK, Konig P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. USA 94: 12699–12704.Google Scholar
  14. Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334– 337.Google Scholar
  15. Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural. Comput. 7: 307–337.Google Scholar
  16. Kopell N, Ermentrout GB (2002) Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In: B Fiedler, ed. Handbook on Dynamical Systems. Elsevier, New York, pp. 3–54.Google Scholar
  17. Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N, White JA (2005) Synchronization in Hybrid Neuronal Networks of the Hippocampal Formation. J. Neurophysiol. (in press).Google Scholar
  18. O’Keefe J (1993) Hippocampus, theta, and spatial memory. Current Opinion in Neurobiology 3: 917–924.Google Scholar
  19. Oprisan SA, Canavier CC (2001) Stability analysis of rings of pulse-coupled oscillators: The effect of phase-resetting in the second cycle after the pulse is important at synchrony and for long pulses. Differential Equations and Dynamical Systems 9: 243–258.Google Scholar
  20. Oprisan SA, Canavier CC (2002) The influence of limit cycle topology on the phase resetting curve. Neural. Comput. 14: 1027–1057.Google Scholar
  21. Oprisan SA, Thirumalai V, Canavier CC (2003) Dynamics from a time series: Can we extract the phase resetting curve from a time series? Biophys. J. 84: 2919–2928.Google Scholar
  22. Oprisan SA, Prinz AA, Canavier CC (2004) Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys. J. 87: 2283–2298.Google Scholar
  23. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: The Art of Scientific Computing, 2nd edition. Cambridge University Press, Cambridge [Cambridgeshire], New York.Google Scholar
  24. Reyes AD, Fetz EE (1993) Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J. Neurophysiol. 69: 1661–1672.Google Scholar
  25. Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385: 157–161.Google Scholar
  26. Singer W (1999) Neurobiology. Striving for coherence [news; comment]. Nature 397: 391, 393.Google Scholar
  27. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6: 149–172.CrossRefPubMedGoogle Scholar
  28. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380–1386.Google Scholar
  29. Stewart M, Fox SE (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci. 13: 163–168.Google Scholar
  30. Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1: 313–321.Google Scholar
  31. Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201: 160–163.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Theoden I. Netoff
    • 1
    Email author
  • Corey D. Acker
    • 1
  • Jonathan C. Bettencourt
    • 1
  • John A. White
    • 1
  1. 1.Department of Biomedical Engineering, Center for BioDynamics, Center for Memory and BrainBoston UniversityBoston

Personalised recommendations