Journal of Child and Family Studies

, Volume 23, Issue 5, pp 785–799 | Cite as

Neighborhood Social Context and Individual Polycyclic Aromatic Hydrocarbon Exposures Associated with Child Cognitive Test Scores

  • Gina S. LovasiEmail author
  • Nicolia Eldred-Skemp
  • James W. Quinn
  • Hsin-wen Chang
  • Virginia A. Rauh
  • Andrew Rundle
  • Manuela A. Orjuela
  • Frederica P. Perera
Original Paper


Childhood cognitive and test-taking abilities have long-term implications for educational achievement and health, and may be influenced by household environmental exposures and neighborhood contexts. This study evaluates whether age 5 scores on the Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R, administered in English) are associated with polycyclic aromatic hydrocarbon (PAH) exposure and neighborhood context variables including poverty, low educational attainment, low English language proficiency, and inadequate plumbing. The Columbia Center for Children’s Environmental Health enrolled African-American and Dominican-American New York City women during pregnancy, and conducted follow-up for subsequent childhood health outcomes including cognitive test scores. Individual outcomes were linked to data characterizing 1-km network buffers around prenatal addresses, home observations, interviews, and prenatal PAH exposure data from personal air monitors. Prenatal PAH exposure above the median predicted 3.5 point lower total WPPSI-R scores and 3.9 point lower verbal scores; the association was similar in magnitude across models with adjustments for neighborhood characteristics. Neighborhood-level low English proficiency was independently associated with 2.3 point lower mean total WPPSI-R score, 1.2 point lower verbal score, and 2.7 point lower performance score per standard deviation. Low neighborhood-level educational attainment was also associated with 2.0 point lower performance scores. In models examining effect modification, neighborhood associations were similar or diminished among the high PAH exposure group, as compared with the low PAH exposure group. Early life exposure to personal PAH exposure or selected neighborhood-level social contexts may predict lower cognitive test scores. However, these results may reflect limited geographic exposure variation and limited generalizability.


Cognitive development IQ Neighborhood social context Pollution Children 



The authors would like to thank the investigators of the Built Environment and Health project and the research staff and study participants at the Columbia Center for Children’s Environmental Health. The Columbia Center for Children’s Environmental Health is supported by the National Institute of Environmental Health Sciences (; grants 5P01ES009600, 5R01ES008977, 5R01ES11158, 5R01ES012468, R01 ES014393, R01ES13163, P30 ES009089 and 5R01ES10165), the US Environmental Protection Agency (; grants R827027, RD832141, and RD834509), Irving General Clinical Research Center (; grant RR00645), the John and Wendy Neu Family Foundation, the trustees of the Blanchette Hooker Rockefeller Fund, the Educational Foundation of America (, the Johnson Family Foundation (, the Marisla Foundation (, the John Merck Fund (, New York Community Trust (, and the New York Times Company Foundation ( This work was also supported by a career development award from the National Institutes of Health (; grant K01HD067390).

Supplementary material

10826_2013_9731_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 57 kb)


  1. Abraido-Lanza, A. F., Chao, M. T., & Florez, K. R. (2005). Do healthy behaviors decline with greater acculturation? Implications for the Latino mortality paradox. Social Science and Medicine, 61(6), 1243–1255. doi: 10.1016/j.socscimed.2005.01.016.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adamkiewicz, G., Zota, A. R., Fabian, M. P., Chahine, T., Julien, R., Spengler, J. D., et al. (2011). Moving environmental justice indoors: Understanding structural influences on residential exposure patterns in low-income communities. American Journal of Public Health, 101(Suppl 1), S238–S245. doi: 10.2105/AJPH.2011.300119.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anderson, L. M., Diwan, B. A., Fear, N. T., & Roman, E. (2000). Critical windows of exposure for children’s health: Cancer in human epidemiological studies and neoplasms in experimental animal models. Environmental Health Perspectives, 108(Suppl 3), 573–594.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Andreias, L., Borawski, E., Schluchter, M., Taylor, H. G., Klein, N., & Hack, M. (2010). Neighborhood influences on the academic achievement of extremely low birth weight children. Journal of Pediatric Psychology, 35(3), 275–283. doi: 10.1093/jpepsy/jsp057.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Baezconde-Garbanati, L. A., Weich-Reushe, K., Espinoza, L., Portugal, C., Barahona, R., Garbanati, J., et al. (2011). Secondhand smoke exposure among Hispanics/Latinos living in multiunit housing: Exploring barriers to new policies. American Journal of Health Promotion, 25(5 Suppl), S82–S90. doi: 10.4278/ajhp.100628-QUAL-219.PubMedCrossRefGoogle Scholar
  6. Bostrom, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110(Suppl 3), 451–488.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Braaten, E. B., & Norman, D. (2006). Intelligence (IQ) testing. Pediatrics in Review, 27(11), 403–408.PubMedGoogle Scholar
  8. Brant, A. M., Haberstick, B. C., Corley, R. P., Wadsworth, S. J., DeFries, J. C., & Hewitt, J. K. (2009). The developmental etiology of high IQ. Behavior Genetics, 39(4), 393–405. doi: 10.1007/s10519-009-9268-x.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Breslau, N., Chilcoat, H. D., Susser, E. S., Matte, T., Liang, K. Y., & Peterson, E. L. (2001). Stability and change in children’s intelligence quotient scores: A comparison of two socioeconomically disparate communities. American Journal of Epidemiology, 154(8), 711–717.PubMedCrossRefGoogle Scholar
  10. Brooks-Gunn, J., Klebanov, P. K., & Duncan, G. J. (1996). Ethnic differences in children’s intelligence test scores: Role of economic deprivation, home environment, and maternal characteristics. Child Development, 67(2), 396–408.PubMedCrossRefGoogle Scholar
  11. Brown, L., Sherbenou, R. J., & Johnsen, S. K. (1990). Test of nonverbal intelligence: A language-free measure of cognitive ability. Austin: Pro-ed.Google Scholar
  12. Burr, J. A., Mutchler, J. E., & Gerst, K. (2010). Patterns of residential crowding among Hispanics in later life: Immigration, assimilation, and housing market factors. Journals of Gerontology Series B, Psychological Sciences and Social Sciences, 65(6), 772–782. doi: 10.1093/geronb/gbq069.CrossRefGoogle Scholar
  13. Caldwall, B. M., & Bradley, R. H. (1979). Home observation for measurement of the environment. Little Rock, AR: University of Arkansas Press.Google Scholar
  14. Cohen, D. A., Farley, T. A., & Mason, K. (2003). Why is poverty unhealthy? Social and physical mediators. Social Science and Medicine, 57(9), 1631–1641.PubMedCrossRefGoogle Scholar
  15. Cohen, S. E., & Parmelee, A. H. (1983). Prediction of five-year Stanford-Binet scores in preterm infants. Child Development, 54(5), 1242–1253.PubMedCrossRefGoogle Scholar
  16. Council, N. R. (1993). Pesticides in the diets of infants and children. Washington D.C.: National Academy Press.Google Scholar
  17. Cutts, D. B., Meyers, A. F., Black, M. M., Casey, P. H., Chilton, M., Cook, J. T., et al. (2011). US Housing insecurity and the health of very young children. American Journal of Public Health, 101(8), 1508–1514. doi: 10.2105/ajph.2011.300139.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21.CrossRefGoogle Scholar
  19. Delgado-Saborit, J. M., Stark, C., & Harrison, R. M. (2011). Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environment International, 37(2), 383–392. doi: 10.1016/j.envint.2010.10.011.PubMedCrossRefGoogle Scholar
  20. Dong, W., Wang, L., Thornton, C., Scheffler, B. E., & Willett, K. L. (2008). Benzo(a)pyrene decreases brain and ovarian aromatase mRNA expression in Fundulus heteroclitus. Aquatic Toxicology, 88(4), 289–300. doi: 10.1016/j.aquatox.2008.05.006.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Duncan, G. J., Brooks-Gunn, J., & Klebanov, P. K. (1994). Economic deprivation and early childhood development. Child Development, 65(2 Spec No), 296–318.PubMedCrossRefGoogle Scholar
  22. Edwards, S. C., Jedrychowski, W., Butscher, M., Camann, D., Kieltyka, A., Mroz, E., et al. (2010). Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environmental Health Perspectives, 118(9), 1326–1331. doi: 10.1289/ehp.0901070.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Evans, G. W. (2006). Child development and the physical environment. Annual Review of Psychology, 57, 423–451. doi: 10.1146/annurev.psych.57.102904.190057.PubMedCrossRefGoogle Scholar
  24. Evans, G. W., & Kantrowitz, E. (2002). Socioeconomic status and health: The potential role of environmental risk exposure. Annual Review of Public Health, 23, 303–331. doi: 10.1146/annurev.publhealth.23.112001.112349.PubMedCrossRefGoogle Scholar
  25. Fergusson, D. M., Horwood, L. J., & Ridder, E. M. (2005). Show me the child at seven II: Childhood intelligence and later outcomes in adolescence and young adulthood. Journal of Child Psychology and Psychiatry, 46(8), 850–858. doi: 10.1111/j.1469-7610.2005.01472.x.PubMedCrossRefGoogle Scholar
  26. Fernandez, R. M., & Nielsen, F. (1986). Bilingualism and Hispanic scholastic achievement: Some baseline results. Social Science Research, 15(1), 43–70.CrossRefGoogle Scholar
  27. Flanagan, D. P., & Alfonso, V. C. (1995). A critical review of the technical characteristics of new and recently revised intelligence tests for preschool children. Journal of Psychoeducational Assessment, 13(1), 66–90.CrossRefGoogle Scholar
  28. Flores, G., Abreu, M., & Tomany-Korman, S. C. (2005). Limited english proficiency, primary language at home, and disparities in children’s health care: How language barriers are measured matters. Public Health Reports, 120(4), 418–430.PubMedCentralPubMedGoogle Scholar
  29. Franzini, L., Ribble, J. C., & Keddie, A. M. (2001). Understanding the Hispanic paradox. Ethnicity and Disease, 11(3), 496–518.PubMedGoogle Scholar
  30. Gallo, L. C., Penedo, F. J., Espinosa de los Monteros, K., & Arguelles, W. (2009). Resiliency in the face of disadvantage: Do Hispanic cultural characteristics protect health outcomes? Journal of Personality, 77(6), 1707–1746. doi: 10.1111/j.1467-6494.2009.00598.x.PubMedCrossRefGoogle Scholar
  31. Gee, G. C., & Payne-Sturges, D. C. (2004). Environmental health disparities: A framework integrating psychosocial and environmental concepts. Environmental Health Perspectives, 112(17), 1645–1653.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Grady, S. C. (2011). Housing quality and racial disparities in low birth weight: A GIS assessment. Geospatial Analysis of Environmental Health, 4(2), 303–318.CrossRefGoogle Scholar
  33. Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368(9553), 2167–2178. doi: 10.1016/S0140-6736(06)69665-7.PubMedCrossRefGoogle Scholar
  34. Hanson, M. J., Miller, A. D., Diamond, K., Odom, S., Lieber, J., Butera, G., et al. (2011). Neighborhood community risk influences on preschool children’s development and school readiness. Infants & Young Children, 24(1), 87.CrossRefGoogle Scholar
  35. Helm, D., Laussmann, D., & Eis, D. (2010). Assessment of environmental and socio-economic stress. Central European Journal of Public Health, 18(1), 3–7.PubMedGoogle Scholar
  36. Herbstman, J. B., Tang, D., Zhu, D., Qu, L., Sjodin, A., Li, Z., et al. (2012). Prenatal exposure to polycyclic aromatic hydrocarbons, Benzo[a]Pyrene-DNA adducts and genomic DNA methylation in cord blood. Environmental Health Perspectives,. doi: 10.1289/ehp.1104056.Google Scholar
  37. Hernan, M. A., Hernandez-Diaz, S., & Robins, J. M. (2004). A structural approach to selection bias. Epidemiology, 15(5), 615–625.PubMedCrossRefGoogle Scholar
  38. Hernandez, D. J., Denton, N. A., & Macartney, S. E. (2008). Children in Immigrant Families: Looking to Americaís futureí. Social Policy Report, 22(3), 3–22.Google Scholar
  39. Hoehner, C. M., Brennan, L. K., Brownson, R. C., Handy, S. L., & Killingsworth, R. (2003). Opportunities for integrating public health and urban planning approaches to promote active community environments. American Journal of Health Promotion, 18(1), 14–20.PubMedCrossRefGoogle Scholar
  40. Huston, A. C., & Bentley, A. C. (2010). Human development in societal context. Annual Review of Psychology, 61(411–437), C411. doi: 10.1146/annurev.psych.093008.100442.CrossRefGoogle Scholar
  41. Hutch, D. J., Bouye, K. E., Skillen, E., Lee, C., Whitehead, L., & Rashid, J. R. (2011). Potential strategies to eliminate built environment disparities for disadvantaged and vulnerable communities. American Journal of Public Health, 101(4), 587–595. doi: 10.2105/AJPH.2009.173872.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Jackson, R. J., & Tester, J. (2008). Environment shapes health, including children’s mental health. Journal of the American Academy of Child and Adolescent Psychiatry, 47(2), 129–131. doi: 10.1097/chi.0b013e31815d6944.PubMedCrossRefGoogle Scholar
  43. Jedrychowski, W., Galas, A., Pac, A., Flak, E., Camman, D., Rauh, V., et al. (2005). Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. European Journal of Epidemiology, 20(9), 775–782. doi: 10.1007/s10654-005-1048-1.PubMedCrossRefGoogle Scholar
  44. Johnson, W., Corley, J., Starr, J. M., & Deary, I. J. (2011). Psychological and physical health at age 70 in the Lothian Birth Cohort 1936: Links with early life IQ, SES, and current cognitive function and neighborhood environment. Health Psychology, 30(1), 1–11. doi: 10.1037/a0021834.PubMedCrossRefGoogle Scholar
  45. Kao, G., Tienda, M., NORC, & Center, U. o. C. P. R. (1995). Optimism and achievement: The educational performance of immigrant youth. Social Science Quarterly-Austin, 76, 1.Google Scholar
  46. Kaplan, C. (1996). Predictive validity of the WPPSI-R: A four year follow-up study. Psychology in the Schools, 33, 211–220.CrossRefGoogle Scholar
  47. Lee, C., & Moudon, A. V. (2004). Physical activity and environment research in the health field: Implications for urban and transportation planning practice and research. Journal of Planning Literature, 19(2), 147–181.CrossRefGoogle Scholar
  48. Leventhal, T., & Brooks-Gunn, J. (2003). Moving to opportunity: An experimental study of neighborhood effects on mental health. American Journal of Public Health, 93(9), 1576–1582. doi: 10.2105/AJPH.93.9.1576.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Lloyd, J. E., Li, L., & Hertzman, C. (2010). Early experiences matter: Lasting effect of concentrated disadvantage on children’s language and cognitive outcomes. Health Place, 16(2), 371–380. doi: 10.1016/j.healthplace.2009.11.009.PubMedCrossRefGoogle Scholar
  50. Lovasi, G. S., Quinn, J. W., Rauh, V. A., Perera, F. P., Andrews, H. F., Garfinkel, R., et al. (2011). Chlorpyrifos exposure and urban residential environment characteristics as determinants of early childhood neurodevelopment. American Journal of Public Health, 101(1), 63–70. doi: 10.2105/AJPH.2009.168419.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Matute-Bianchi, M. E. (1986). Ethnic identities and patterns of school success and failure among Mexican-descent and Japanese-American students in a California high school: An ethnographic analysis. American Journal of Education, 95, 233–255.Google Scholar
  52. Moudon, A. V., Lee, C., Cheadle, A. D., Garvin, C., Johnson, D., Schmid, T. L., et al. (2006). Operational definitions of walkable neighborhood: Theoretical and empirical insights. Journal of Physical Activity and Health, 3(Suppl 1), S99–S117.Google Scholar
  53. Neisser, U., Boodoo, G., Bouchard, T. J., Jr, Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51(2), 77.CrossRefGoogle Scholar
  54. Oliver, L. N., Schuurman, N., & Hall, A. W. (2007). Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. International Journal of Health Geographics, 6, 41.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Ou, C. Q., Hedley, A. J., Chung, R. Y., Thach, T. Q., Chau, Y. K., Chan, K. P., et al. (2008). Socioeconomic disparities in air pollution-associated mortality. Environmental Research, 107(2), 237–244. doi: 10.1016/j.envres.2008.02.002.PubMedCrossRefGoogle Scholar
  56. Park, Y., Neckerman, K. M., Quinn, J., Weiss, C., & Rundle, A. (2008). Place of birth, duration of residence, neighborhood immigrant composition and body mass index in New York City. International Journal of Behavioral Nutrition and Physical Activity, 5(1), 19.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Patacchini, E., & Zenou, Y. (2010). Neighborhood effects and parental involvement in the intergenerational transmission of education. Documents de treball IEB, 47, 1–45.Google Scholar
  58. Perera, F. P., Illman, S. M., Kinney, P. L., Whyatt, R. M., Kelvin, E. A., Shepard, P., et al. (2002). The challenge of preventing environmentally related disease in young children: Community-based research in New York City. Environmental Health Perspectives, 110(2), 197–204.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Perera, F. P., Li, Z., Whyatt, R., Hoepner, L., Wang, S., Camann, D., et al. (2009a). Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics, 124(2), e195–e202. doi: 10.1542/peds.2008-3506.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Perera, F. P., Rauh, V., Tsai, W. Y., Kinney, P., Camann, D., Barr, D., et al. (2003). Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environmental Health Perspectives, 111(2), 201–205.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Perera, F. P., Rauh, V., Whyatt, R. M., Tang, D., Tsai, W. Y., Bernert, J. T., et al. (2005). A summary of recent findings on birth outcomes and developmental effects of prenatal ETS, PAH, and pesticide exposures. Neurotoxicology, 26(4), 573–587. doi: 10.1016/j.neuro.2004.07.007.PubMedCrossRefGoogle Scholar
  62. Perera, F. P., Rauh, V., Whyatt, R. M., Tsai, W. Y., Tang, D., Diaz, D., et al. (2006). Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environmental Health Perspectives, 114(8), 1287–1292.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Perera, F., Tang, W. Y., Herbstman, J., Tang, D., Levin, L., Miller, R., et al. (2009b). Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE, 4(2), e4488. doi: 10.1371/journal.pone.0004488.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Perera, F. P., Tang, D., Tu, Y. H., Cruz, L. A., Borjas, M., Bernert, T., et al. (2004). Biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environmental Health Perspectives, 112(10), 1133–1136.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Perera, F. P., Whyatt, R. M., Jedrychowski, W., Rauh, V., Manchester, D., Santella, R. M., et al. (1998). Recent developments in molecular epidemiology: A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. American Journal of Epidemiology, 147(3), 309–314.PubMedCrossRefGoogle Scholar
  66. Phelan, J. C., Link, B. G., Diez-Roux, A., Kawachi, I., & Levin, B. (2004). “Fundamental causes” of social inequalities in mortality: A test of the theory. Journal of Health and Social Behavior, 45(3), 265–285.PubMedCrossRefGoogle Scholar
  67. Pickett, K. E., & Pearl, M. (2001). Multilevel analyses of neighbourhood socioeconomic context and health outcomes: A critical review. Journal of Epidemiology and Community Health, 55(2), 111–122.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Pong, S., & Hao, L. (2007). Neighborhood and school factors in the school performance of immigrants, Children1. International Migration Review, 41(1), 206–241.CrossRefGoogle Scholar
  69. Popay, J., Thomas, C., Williams, G., Bennett, S., Gatrell, A., & Bostock, L. (2003). A proper place to live: Health inequalities, agency and the normative dimensions of space. Social Science and Medicine, 57(1), 55–69.PubMedCrossRefGoogle Scholar
  70. Rauh, V. A., Chew, G. R., & Garfinkel, R. S. (2002). Deteriorated housing contributes to high cockroach allergen levels in inner-city households. Environmental Health Perspectives, 110(Suppl 2), 323–327.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Rauh, V. A., Whyatt, R. M., Garfinkel, R., Andrews, H., Hoepner, L., Reyes, A., et al. (2004). Developmental effects of exposure to environmental tobacco smoke and material hardship among inner-city children. Neurotoxicology and Teratology, 26(3), 373–385. doi: 10.1016/ Scholar
  72. Rowe, D. C., Jacobson, K. C., & Van den Oord, E. J. (1999). Genetic and environmental influences on vocabulary IQ: Parental education level as moderator. Child Development, 70(5), 1151–1162.PubMedCrossRefGoogle Scholar
  73. Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64(1), 80–97.PubMedCrossRefGoogle Scholar
  74. Sanyal, M. K., & Li, Y. L. (2007). Deleterious effects of polynuclear aromatic hydrocarbon on blood vascular system of the rat fetus. Birth Defects Research, Part B: Developmental and Reproductive Toxicology, 80(5), 367–373. doi: 10.1002/bdrb.20122.CrossRefGoogle Scholar
  75. Sastry, N., & Pebley, A. R. (2010). Family and neighborhood sources of socioeconomic inequality in children’s achievement. Demography, 47(3), 777–800.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Scribner, R. (1996). Paradox as paradigm–the health outcomes of Mexican Americans. American Journal of Public Health, 86(3), 303–305.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Sharkey, P., & Elwert, F. (2011). The legacy of disadvantage: multigenerational neighborhood effects on cognitive ability. American Journal of Sociology, 116(6), 1934–1981.CrossRefGoogle Scholar
  78. Slater, M. A., Naqvi, M., Andrew, L., & Haynes, K. (1987). Neurodevelopment of monitored versus nonmonitored very low birth weight infants: The importance of family influences. Journal of Developmental and Behavioral Pediatrics, 8(5), 278–285.PubMedCrossRefGoogle Scholar
  79. Standish, K., Nandi, V., Ompad, D. C., Momper, S., & Galea, S. (2010). Household density among undocumented Mexican immigrants in New York City. Journal of Immigrant and Minority Health, 12(3), 310–318. doi: 10.1007/s10903-008-9175-x.PubMedCrossRefGoogle Scholar
  80. Sternberg, R. J., Bundy, D. A., & Grigorenko, E. (2001). The predictive value of IQ. Merrill-Palmer Quarterly, 47(1), 1–41.CrossRefGoogle Scholar
  81. Takeda, K., Tsukue, N., & Yoshida, S. (2004). Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Environmental Sciences, 11(1), 33–45.PubMedGoogle Scholar
  82. Tarter, R. E., Kirisci, L., Gavaler, J. S., Reynolds, M., Kirillova, G., Clark, D. B., et al. (2009). Prospective study of the association between abandoned dwellings and testosterone level on the development of behaviors leading to cannabis use disorder in boys. Biological Psychiatry, 65(2), 116–121. doi: 10.1016/j.biopsych.2008.08.032.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.PubMedCrossRefGoogle Scholar
  84. Vaden-Kiernan, M., DíElio, M. A., OíBrien, R. W., Tarullo, L. B., Zill, N., & Hubbell-McKey, R. (2010). Neighborhoods as a developmental context: A multilevel analysis of neighborhood effects on head start families and children. American Journal of Community Psychology, 45(1), 49–67.PubMedCrossRefGoogle Scholar
  85. van Soelen, I. L., Brouwer, R. M., van Leeuwen, M., Kahn, R. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2011). Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics, 14(2), 119–128. doi: 10.1375/twin.14.2.119.PubMedCrossRefGoogle Scholar
  86. Vega, W. A., Ang, A., Rodriguez, M. A., & Finch, B. K. (2011). Neighborhood protective effects on depression in Latinos. American Journal of Community Psychology, 47, 114–126.PubMedCrossRefGoogle Scholar
  87. Wechsler, D. (1989). Wechsler Preschool and Primary Scale of Intelligence—Revised. San Antonio, TX: The Psychological Corporation.Google Scholar
  88. Weiland, K., Neidell, M., Rauh, V., & Perera, F. (2011). Cost of developmental delay from prenatal exposure to airborne polycyclic aromatic hydrocarbons. Journal of Health Care for the Poor and Underserved, 22(1), 320–329. doi: 10.1353/hpu.2011.0012.PubMedCentralPubMedGoogle Scholar
  89. Wen, M., Browning, C. R., & Cagney, K. A. (2003). Poverty, affluence, and income inequality: Neighborhood economic structure and its implications for health. Social Science and Medicine, 57(5), 843–860.PubMedCrossRefGoogle Scholar
  90. Whalley, L. J., & Deary, I. J. (2001). Longitudinal cohort study of childhood IQ and survival up to age 76. BMJ, 322(7290), 819.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Wheaton, B., & Clarke, P. (2003). Space meets time: Integrating temporal and contextual influences on mental health in early adulthood. American Sociological Review, 68, 680–706.CrossRefGoogle Scholar
  92. Williams, D. R., & Collins, C. (2001). Racial residential segregation: A fundamental cause of racial disparities in health. Public Health Reports, 116(5), 404–416.PubMedCentralPubMedCrossRefGoogle Scholar
  93. World Health Organization. (1986). Principles for evaluating health risks from chemicals during infancy and early childhood: The need for a special approach. In Environmental Health Criteria 59. Geneva, Switzerland: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gina S. Lovasi
    • 1
    Email author
  • Nicolia Eldred-Skemp
    • 1
  • James W. Quinn
    • 1
  • Hsin-wen Chang
    • 2
  • Virginia A. Rauh
    • 3
  • Andrew Rundle
    • 1
  • Manuela A. Orjuela
    • 3
  • Frederica P. Perera
    • 3
  1. 1.Department of EpidemiologyColumbia University Mailman School of Public HealthNew YorkUSA
  2. 2.Department of BiostatisticsColumbia University Mailman School of Public HealthNew YorkUSA
  3. 3.Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkUSA

Personalised recommendations