Skip to main content
Log in

A simulation study of the impact of traps in the GaN substrate on the electrical characteristics of an AlGaN/GaN HEMT with a thin channel layer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN) substrates are promising candidates for GaN high-electron-mobility transistors (HEMTs) because of their epitaxial layer growth with low defect density. We perform device simulations to study the influence of substrate acceptor traps in GaN HEMTs on semiinsulating GaN substrates with a thin (0.02 μm) channel layer. When the trap concentration in the GaN substrate increases at a constant channel trap concentration of 1.0 × 1015 cm−3, the drain leakage current decreases but the transient response worsens. These phenomena result from an increase of the conduction-band energy due to ionized acceptor traps with negative charge. For GaN buffer structures, we obtain moderate suppression of the drain leakage current (1.7 × 10−9 A/mm) and a good transient response (with a normalized drain current of 0.86 at 1 ms for the transient response from the off- to on-state condition) at a substrate trap concentration of 5.0 × 1015 cm−3. The aluminum gallium nitride (AlGaN) back-barrier structure is highly effective for suppressing the drain leakage current at a low trap concentration of 1.0 × 1015 cm−3 in GaN substrates. Although its maximum drain current is decreased, this structure exhibits a low drain leakage current (4.7 × 10−11 A/mm) and a high normalized drain current (0.95) in the transient response. Increasing the Al content in the barriers of the GaN HEMT structure increases its maximum drain current to 1.2 A/mm, whereas the drain leakage current and transient response are well maintained. Moreover, the traps in the GaN substrate affect the low-frequency S21, which is important for the linearity of power amplifiers, and the characteristics of S21 are similar to those of the transient responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Saremi, M., et al.: Analysis of the reverse I-V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111, 043507 (2017). https://doi.org/10.1063/1.4986756

    Article  Google Scholar 

  2. Saremi M.: Modeling and Simulation of the Programmable Metallization Cells (PMCs) and Diamond-Based Power Devices. Dissertation of Doctor of Philosophy, Arizona State University, USA 2017. https://repository.asu.edu/items/44124. Accessed 3 June 2021

  3. Coffie, R. L.: High power high frequency transistors: a material’s perspective. In high-frequency GaN Electronic Devices, Ediors, P. Fay, D. Jena, P. Maki, AG, Switzerland: Springer Nature, (2020). ch. 2, pp. 5–41

  4. Mishra, U.K., et al.: AlGaN/GaN HEMTs—an overview of device operation and applications. Proc. IEEE 90, 1022–1031 (2002). https://doi.org/10.1109/JPROC.2002.1021567

    Article  Google Scholar 

  5. Amano, H: GaN as A Key Material for Realizing Internet of Energy. CSW2019, May 2019, MoPLN1–1, https://www.csw-jpn.org/wp-content/uploads/2019/01/CSW2019_Abstract_AMANO.pdf.

  6. Kaun, S.W., et al.: Effects of threading dislocation density on the gate leakage of AlGaN/GaN heterostructures for high electron mobility transistors. Appl. Phys. Express 4, 024101 (2011). https://doi.org/10.1143/APEX.4.024101

    Article  Google Scholar 

  7. Binari, S.C., et al.: Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 465–471 (2001). https://doi.org/10.1109/16.906437

    Article  Google Scholar 

  8. Vetury, R., et al.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron. Devices 48, 560–566 (2001). https://doi.org/10.1109/16.906451

    Article  Google Scholar 

  9. Uren, M.J., et al.: Buffer design to minimize current collapse in GaN/AlGaN HFETs. IEEE Trans. Electron. Devices 59, 3327–3333 (2012). https://doi.org/10.1109/TED.2012.2216535

    Article  Google Scholar 

  10. Bisi, D., et al.: Deep-level characterization in GaN HEMTs-Part I: advantages and limitations of drain current transient measurements. IEEE Trans. Electron Devices 60, 3166–3175 (2013). https://doi.org/10.1109/TED.2013.2279021

    Article  Google Scholar 

  11. Tripathi, D.C., et al.: Insight into buffer trap-induced current saturation and current collapse in GaN RF heterojunction field-effect transistors. IEEE Trans. Electron. Devices 67(5460), 5465 (2020). https://doi.org/10.1109/TED.2020.3034062

    Article  Google Scholar 

  12. Frayssinet, E., et al.: High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates. Appl. Phys. Lett. 77, 2551–2553 (2000). https://doi.org/10.1063/1.1318236

    Article  Google Scholar 

  13. Liu, C., et al.: Ultralow reverse leakage current in AlGaN/GaN lateral Schottky barrier diodes grown on bulk GaN substrate. Appl. Phys. Express 9, 031001 (2016). https://doi.org/10.7567/APEX.9.031001

    Article  Google Scholar 

  14. Khan, M.A., et al.: GaN–AlGaN heterostructure field-effect transistors over bulk GaN substrates. Appl. Phys. Lett. 76, 3807–3809 (2000). https://doi.org/10.1063/1.126788

    Article  Google Scholar 

  15. Chu, K.K., et al.: 9.4-W/mm power density AlGaN–GaN HEMTs on free-standing GaN substrates. IEEE Electron. Device Lett. 25, 596–598 (2004). https://doi.org/10.1109/LED.2004.833847

    Article  Google Scholar 

  16. Storm, D.F., et al.: Microwave power performance of MBE-grown AlGaN/GaN HEMTs on HVPE GaN substrates. Electron. Lett. 42, 663–665 (2006). https://doi.org/10.1049/iel:20060648

    Article  Google Scholar 

  17. Storma, D.F., et al.: Microwave performance and structural characterization of MBE-grown AlGaN/GaN HEMTs on low dislocation density GaN substrates. J. Cryst. Growth 305, 340–345 (2007). https://doi.org/10.1016/j.jcrysgro.2007.04.003

    Article  Google Scholar 

  18. Anderson, T.J., et al.: Effect of reduced extended defect density in MOCVD grown AlGaN/GaN HEMTs on native GaN Substrates. IEEE Electron Device Lett. 37, 28–30 (2016). https://doi.org/10.1109/LED.2015.2502221

    Article  Google Scholar 

  19. Handa, H., et al.: High-speed switching and current-collapse-free operation by GaN gate injection transistors with thick GaN Buffer on bulk GaN substrates. In IEDM Tech. Dig. (2016). https://doi.org/10.1109/IEDM.2016.7838387

    Article  Google Scholar 

  20. Alshahed, M., et al.: Low-dispersion, high-voltage, low-leakage GaN HEMTs on native GaN substrates. IEEE Trans. Electron Devices 65, 2939–2947 (2018). https://doi.org/10.1109/TED.2018.2832250

    Article  Google Scholar 

  21. Wojtasiak, W., et al.: AlGaN/GaN high electron mobility transistors on semi-insulating Ammono-GaN substrates with regrown ohmic contacts. Micromachines 9, 546–559 (2018). https://doi.org/10.3390/mi9110546

    Article  Google Scholar 

  22. Zhang, D., et al.: Reliability improvement of GaN devices on free-standing GaN substrates. IEEE Trans. Electron Devices 65, 3379–3387 (2018). https://doi.org/10.1109/TED.2018.2848971

    Article  Google Scholar 

  23. Ando, Y., et al.: Improved operation stability of Al2O3/AlGaN/GaN MOS high-electron-mobility transistors grown on GaN substrates. Appl. Phys. Express 12, 024002 (2019). https://doi.org/10.7567/1882-0786/aafded

    Article  Google Scholar 

  24. Kumazaki, Y., et al.: Remarkable current collapse suppression in GaN HEMTs on free-standing GaN Substrates. In BCICTS2019, Nov. 2019, 10b.2, https://doi.org/10.1109/BCICTS45179.2019.8972742.

  25. Liu, X., et al.: Analysis of the back-barrier effect in AlGaN/GaN high electron mobility transistor on free-standing GaN substrates. J. Alloys and Compd. 814, 152293 (2020). https://doi.org/10.1016/j.jallcom.2019.152293

    Article  Google Scholar 

  26. Watanabe, I. et al.: Research and development of GaN-based HEMTs for millimeter- and terahertz-wave wireless communications. In RFIT2020, Sept. 2020. https://doi.org/10.1109/RFIT49453.2020.9226221

  27. Kumazaki, Y., et al.: Over 80% power-added-efficiency GaN high-electron-mobility transistors on free-standing GaN substrates. Appl. Phys. Express 14, 016502 (2020)

    Article  Google Scholar 

  28. Vaudo, R.P., et al.: Characteristics of semi-insulating Fe-doped GaN substrates. Phys. Stat. Sol. (a) 200, 18–21 (2003). https://doi.org/10.1002/pssa.200303273

    Article  Google Scholar 

  29. Kordoš, P., et al.: Conductivity and Hall effect of free-standing highly resistive epitaxial GaN: Fe substrates. Appl. Phys. Lett. 85, 5616–5618 (2004). https://doi.org/10.1063/1.1831568

    Article  Google Scholar 

  30. Freitas, J.A., Jr., et al.: Properties of Fe-doped semi-insulating GaN substrates for high-frequency device fabrication. J. Cryst. Growth 305, 403–407 (2007). https://doi.org/10.1016/j.jcrysgro.2007.03.031

    Article  Google Scholar 

  31. Freitas, J.A., Jr., et al.: Efficient iron doping of HVPE GaN. J. Cryst. Growth 500, 111–116 (2018). https://doi.org/10.1016/j.jcrysgro.2018.07.030

    Article  Google Scholar 

  32. Miyamoto, Y., Gotow, T.: Simulation of the short channel effect in GaN HEMT with a combined thin undoped channel and semi-insulating layer. IEICE Trans. Electron. E103–C, 304–307, (2020). https://doi.org/10.1587/transele.2019FUS0002

  33. Ito, K., Oishi, T.: Study on effects of GaN trap depth profiles to transient response in GaN HEMTs on GaN substrates by device simulation. in RFIT2020, Sept. 2020. https://doi.org/10.1109/RFIT49453.2020.9226201

  34. Nunes, L. C. et al.: A New Nonlinear Model Extraction Methodology for GaN HEMTs Subject to Trapping Effects. In 2015IEEE MTT-S, May 2015. https://doi.org/10.1109/MWSYM.2015.7166977

  35. Barradas, F.M., et al.: Compensation of long-term memory effects on GaN HEMT-based power amplifiers. IEEE Trans. Microw. Theory Tech. 65, 3379–3388 (2017). https://doi.org/10.1109/TMTT.2017.2671368

    Article  Google Scholar 

  36. Bader, S. J., et al.: Linearity aspects of high power amplification in GaN Transistors. in high-frequency GaN electronic devices, Ediors, P. FayDebdeep J.P. Maki, AG, Switzerland: Springer Nature, (2020). Ch. 4, pp.83–107

  37. Palacios, T., et al.: AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron. Device Lett. 27, 13–15 (2006). https://doi.org/10.1109/LED.2005.860882

    Article  Google Scholar 

  38. Lee, D.S., et al.: InAlN/GaN HEMTs with AlGaN back barriers. IEEE Electron. Device Lett. 32, 617–619 (2011). https://doi.org/10.1109/LED.2011.2111352

    Article  Google Scholar 

  39. Murugapandiyan, P., et al.: Design and analysis of 30 nm T-gate InAlN/GaN HEMT with AlGaN back-barrier for high power microwave applications. Superlattices Microstruct. 111, 045311 (2017). https://doi.org/10.1016/j.spmi.2017.08.002

    Article  Google Scholar 

  40. Silvaco, Atlas (2018). Accessed: January 15, 2021. [Online] Available: https://silvaco.com/tcad/

  41. Hayashi, K., et al.: Analysis of drain leakage current in AlGaN/GaN HEMTs. IEICE Trans. Electron., vol.J96-C, no.8, pp.200–208, Aug. 2013 (in Japanese). Online ISSN: 1881–0217 https://search.ieice.org/bin/summary.php?id=j96-c_8_200. Accessed 7 June 2021

  42. Oishi, T. et al.: Simulation Study of Gate Leakage Current under Three-terminal Operation for AlGaN/GaN HEMTs. 10th Topical Workshop on Heterostructure Microelectronics (TWHM 2013) 4–3, Sept. 2–5, 2013 Hakodate, Japan

  43. Zagni, N., Chini, A., Puglisi, F.M., Pavan, P., Verzellesi, G.: The effects of carbon on the bidirectional threshold voltage instabilities induced by negative gate bias stress in GaN MIS-HEMTs. J. Comput. Electron. 19, 1555–1563 (2020). https://doi.org/10.1007/s10825-020-01573-8

    Article  Google Scholar 

  44. Kanegae, K., et al.: Accurate method for estimating hole trap concentration in n-type GaN via minority carrier transient spectroscopy. Appl. Phys. Express 11(7), 071002 (2018). https://doi.org/10.7567/APEX.11.071002

    Article  Google Scholar 

  45. Kanegae, K., et al.: Deep-level transient spectroscopy studies of electron and hole traps in n-type GaN homoepitaxial layers grown by quartz-free hydride-vapor-phase epitaxy. Appl. Phys. Lett. 115, 012103 (2019). https://doi.org/10.1063/1.5098965

    Article  Google Scholar 

  46. Looka, D.C., et al.: Identification of donors, acceptors, and traps in bulk-like HVPE GaN. J. Cryst. Growth 281, 143–150 (2005). https://doi.org/10.1016/j.jcrysgro.2005.03.035

    Article  Google Scholar 

  47. Bockowskia, M., et al.: Doping in bulk HVPE-GaN grown on native seeds—highly conductive and semi-insulating crystals. J. Cryst. Growth 499, 1–7 (2018). https://doi.org/10.1016/j.jcrysgro.2018.07.019

    Article  Google Scholar 

  48. Kompa, G.: Trap centers and trap dynamics. in Basic Properties of III-V Devices—Understanding Mysterious Trapping Phenomena, Kassel, Dutch, Kassel University Press, 2014 pp. 287–300

Download references

Acknowledgements

This work was supported by MEXT “Research and development of next-generation semiconductor to realize energy-saving society” Program (grant no. JPJ005357).

Funding

This method is based upon work supported by Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Oishi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, T., Ito, K. A simulation study of the impact of traps in the GaN substrate on the electrical characteristics of an AlGaN/GaN HEMT with a thin channel layer. J Comput Electron 20, 2441–2455 (2021). https://doi.org/10.1007/s10825-021-01809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01809-1

Keywords

Navigation