Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite

  • Roozbeh Sabetvand
  • M. E. GhaziEmail author
  • Morteza Izadifard


CH3NH3SnI3 is a promising lead-free perovskite structure for the absorber layer in solar cells. In this work, for the first time, we simulated the effect of temperature change on the electronic and optical properties of CH3NH3SnI3 through a combination of the molecular dynamics and density functional theory methods. We report the results of our studies on the electronic and optical properties of the normal (300 K) and expanded (325 K)/contracted (275 K) CH3NH3SnI3 structures, and compare the obtained results with each other. Our electronic calculations showed that the direct band gap is opened up to 1.02 eV, 1.25 eV, and 0.88 eV for the normal and thermally expanded/contracted structures, respectively. The calculated density of states for all the structures shows that the Sn and I ions play an important role in the electronic properties of the studied samples, and methyl ammonium (CH3NH3) is a structural framework for this perovskite. The absorption, transparency, and maximum reflectivity to the considered energies indicate the potential of CH3NH3SnI3 for optoelectronic applications. The obtained results also show that the CH3NH3SnI3 perovskite, as an absorber layer in solar cells, exhibits a better optical performance at 325 K than at 275 K and 300 K.


Cubic CH3NH3SnI3 Electronic properties Optical properties Thermal expansion/contraction Density functional theory Molecular dynamics 



  1. 1.
    Tong, P., Sun, Y.P., Zhao, B.C., Zhu, X.B., Song, W.H.: Influence of carbon concentration on structural, magnetic and electrical transport properties for antiperovskite compounds AlCxMn3. Solid State Commun. 138(2), 64–67 (2006). CrossRefGoogle Scholar
  2. 2.
    Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., et al.: Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63(2), 024426 (2000). CrossRefGoogle Scholar
  3. 3.
    Kim, W.S., Chi, E.O., Kim, J.C., Hur, N.H., Lee, K.W., Choi, Y.N.: Cracks induced by magnetic ordering in the antiperovskite ZnNMn3. Phys. Rev. B 68(17), 172402 (2003). CrossRefGoogle Scholar
  4. 4.
    Chi, E.O., Kim, W.S., Hur, N.H.: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120(7–8), 307–310 (2001). CrossRefGoogle Scholar
  5. 5.
    Singer, P., Imai, T., He, T., Hayward, M., Cava, R.: C13 NMR investigation of the superconductor MgCNi3 up to 800 K. Phys. Rev. Lett. 87(25), 257601 (2001). CrossRefGoogle Scholar
  6. 6.
    Okoye, C.M.I.: First-principles optical calculations of AsNMg3 and SbNMg3. Mater. Sci. Eng. B 130(1–3), 101–107 (2006). CrossRefGoogle Scholar
  7. 7.
    Chi, E., Kim, W., Hur, N., Jung, D.: New Mg-based antiperovskites PnNMg3 (Pn = As, Sb). Solid State Commun. 121(6–7), 309–312 (2002). CrossRefGoogle Scholar
  8. 8.
    Hamberg, I., Granqvist, C.G.: Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123–R160 (1986). CrossRefGoogle Scholar
  9. 9.
    Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G.: All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012). CrossRefGoogle Scholar
  10. 10.
    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). CrossRefGoogle Scholar
  11. 11.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). CrossRefGoogle Scholar
  12. 12.
    Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). CrossRefGoogle Scholar
  13. 13.
    Alidaei, M., Izadifard, M., Ghazi, M.E., Ahmadi, V.: Efficiency enhancement of perovskite solar cells using structural and morphological improvement of CH3NH3PbI3 absorber layers. Mater. Res. Express 5(1), 016412 (2018). CrossRefGoogle Scholar
  14. 14.
    Alidaei, M., Izadifard, M., Ghazi, M.E., Roghabadi, F.A., Ahmadi, V.: Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer. J. Mater. Sci. Mater. Electron. (2019). CrossRefGoogle Scholar
  15. 15.
    Faghihnasiri, M., Izadifard, M., Ghazi, M.E.: DFT study of mechanical properties and stability of cubic methylammonium lead halide perovskites (CH3NH3PbX3, X = I, Br, Cl). J Phys Chem C 121(48), 27059–27070 (2017). CrossRefGoogle Scholar
  16. 16.
    Faghihnasiri, M., Izadifard, M., Ghazi, M.E.: DFT study of electronic structure and optical properties of layered two-dimensional CH3NH3PbX3 (X = Cl, Br, I). Energy Sour. Part A Recovery Util. Environ. Eff. (2019). CrossRefGoogle Scholar
  17. 17.
    Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014). CrossRefGoogle Scholar
  18. 18.
    Zhang, H., Qiao, X., Shen, Y., Moehl, T., Zakeeruddin, S.M., Grätzel, M., Wang, M.: Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. J. Mater. Chem. A 3(22), 11762–11767 (2015). CrossRefGoogle Scholar
  19. 19.
    Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Yang, J., Ye, C., Fang, X., Zhang, L.: Thermal expansion of Cu nanowire arrays. Nanotechnology 15(11), 1437–1440 (2004). CrossRefGoogle Scholar
  21. 21.
    Akbarzadeh, H., Abroshan, H., Taherkhani, F., Parsafar, G.A.: Calculation of thermodynamic properties of Ni nanoclusters via selected equations of state based on molecular dynamics simulations. Solid State Commun. 151(14–15), 965–970 (2011). CrossRefGoogle Scholar
  22. 22.
    Feng, Y., Zhu, J., Tang, D.-W.: Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate. Phys. Lett. A 379(4), 382–388 (2015). CrossRefGoogle Scholar
  23. 23.
    Liu, Z.-J., Sun, X.-W., Tan, X.-M., Guo, Y.-D., Yang, X.-D.: Structural and thermodynamic properties of MgSiO3 perovskite under high pressure and high temperature. Solid State Commun. 144(5–6), 264–268 (2007). CrossRefGoogle Scholar
  24. 24.
    Volz, S., Chen, G.: Lattice dynamic simulation of silicon thermal conductivity. Phys. B 263–264, 709–712 (1999). CrossRefGoogle Scholar
  25. 25.
    Pishkenari, H.N., Afsharmanesh, B., Akbari, E.: Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators. Curr. Appl. Phys. 15(11), 1389–1396 (2015). CrossRefGoogle Scholar
  26. 26.
    Pishkenari, H.N., Afsharmanesh, B., Tajaddodianfar, F.: Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires. Int. J. Eng. Sci. 100, 8–24 (2016). CrossRefGoogle Scholar
  27. 27.
    Jing, Y., Zhang, C., Liu, Y., Guo, L., Meng, Q.: Mechanical properties of kinked silicon nanowires. Phys. B 462, 59–63 (2015). CrossRefGoogle Scholar
  28. 28.
    Zhang, A., Gu, X., Liu, F., Xie, Y., Ye, X., Shi, W.: A study of the size-dependent elastic properties of silicon carbide nanotubes: first-principles calculations. Phys. Lett. A 376(19), 1631–1635 (2012). CrossRefGoogle Scholar
  29. 29.
    Wang, C.-H., Fang, T.-H., Sun, W.-L.: Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations. J. Phys. D Appl. Phys. 47(40), 405302 (2014). CrossRefGoogle Scholar
  30. 30.
    Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117(1), 1–19 (1995). CrossRefzbMATHGoogle Scholar
  31. 31.
    Plimpton, S.J., Thompson, A.P.: Computational aspects of many-body potentials. MRS Bull. 37(05), 513–521 (2012). CrossRefGoogle Scholar
  32. 32.
    Plimpton, S.J., Pollock, R., Stevens, M.: Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In: PPSC (1997)Google Scholar
  33. 33.
    Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011). CrossRefzbMATHGoogle Scholar
  34. 34.
    Nordlund, K., Dudarev, S.L.: Interatomic potentials for simulating radiation damage effects in metals. C R Phys. 9(3–4), 343–352 (2008). CrossRefGoogle Scholar
  35. 35.
    Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990). CrossRefGoogle Scholar
  36. 36.
    Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., et al.: First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002). CrossRefGoogle Scholar
  37. 37.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). MathSciNetCrossRefGoogle Scholar
  38. 38.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). CrossRefGoogle Scholar
  39. 39.
    Ernzerhof, M., Scuseria, G.E.: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029–5036 (1999). CrossRefGoogle Scholar
  40. 40.
    Fletcher, Roger: Practical methods of optimization, 2nd edn. Wiley, New York (1987). ISBN 978-0-471-91547-8zbMATHGoogle Scholar
  41. 41.
    Grundmann, M.: The physics of semiconductors. Springer-Verlag, Berlin, Heidelberg (2010). CrossRefGoogle Scholar
  42. 42.
    Nejat Pishkenari, H., Mohagheghian, E., Rasouli, A.: Molecular dynamics study of the thermal expansion coefficient of silicon. Phys. Lett. A 380(48), 4039–4043 (2016). CrossRefGoogle Scholar
  43. 43.
    Matsui, M.: Molecular dynamics study of MgSiO3 perovskite. Phys. Chem. Miner. 16(3), 234–238 (1988). CrossRefGoogle Scholar
  44. 44.
    Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49(2), 299–312 (2010). CrossRefGoogle Scholar
  45. 45.
    Umari, P., Mosconi, E., De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4(1), 5 (2014). CrossRefGoogle Scholar
  46. 46.
    Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., Schilfgaarde, M.V., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)CrossRefGoogle Scholar
  47. 47.
    Huang, L., Lambrecht, W.R.L.: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88, 165203 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of PhysicsShahrood University of TechnologyShahroodIran

Personalised recommendations