Tight-binding description of graphene–BCN–graphene layered semiconductors

  • Mahsa Ebrahimi
  • Ashkan Horri
  • Majid SanaeepurEmail author
  • Mohammad Bagher Tavakoli


Based on density functional calculations, tight-binding models are proposed for few layers of three BCN allotropes sandwiched between two layers of graphene. The results pave the road toward investigation of the performance of novel nanoelectronic devices such as vertical tunneling field effect transistors and nanoscale sensors operating on the basis of quantum tunneling through these layered materials-based systems.


BCN Graphene Boron nitride Tight-binding DFT 



  1. 1.
    Areshkin, D.A., White, C.T.: Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRefGoogle Scholar
  2. 2.
    Lee, S., Lee, K., Liu, C.H., Kulkarni, G.S., Zhong, Z.: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012)CrossRefGoogle Scholar
  3. 3.
    Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487 (2010)CrossRefGoogle Scholar
  4. 4.
    Yang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G.: Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99(18), 186801 (2007)CrossRefGoogle Scholar
  5. 5.
    Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008)CrossRefGoogle Scholar
  6. 6.
    Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.C.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99(21), 216802 (2007)CrossRefGoogle Scholar
  7. 7.
    Shinde, P.P., Kumar, V.: Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys. Rev. B 84(12), 125401 (2011)CrossRefGoogle Scholar
  8. 8.
    Jung, J., Qiao, Z., Niu, Q., MacDonald, A.H.: Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett. 12(6), 2936–2940 (2012)CrossRefGoogle Scholar
  9. 9.
    Fiori, G., Betti, A., Bruzzone, S., Iannaccone, G.: Lateral graphene–hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 6(3), 2642–2648 (2012)CrossRefGoogle Scholar
  10. 10.
    Saptarshi, D., Prakash, A., Salazar, R., Appenzeller, J.: Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8(2), 1681–1689 (2014)CrossRefGoogle Scholar
  11. 11.
    Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., et al.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)CrossRefGoogle Scholar
  12. 12.
    Dean, C.R., Andrea, F.Y., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010)CrossRefGoogle Scholar
  13. 13.
    Giannazzo, F., Greco, G., Roccaforte, F., Sonde, S.: Vertical transistors based on 2D materials: status and prospects. Crystals 8(2), 70 (2018)CrossRefGoogle Scholar
  14. 14.
    Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, K., Ajayan, P.M., Liu, F.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)CrossRefGoogle Scholar
  15. 15.
    Beniwal, S., Hooper, J., Miller, D.P., Costa, P.S., Chen, G., Liu, S.Y., Dowben, P.A., Sykes, E.C., Zurek, E., Enders, A.: Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3), 2486–2493 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhang, J., Zhang, Y., Huang, S., Lin, W., Chen, W.K.: BC2N/graphene heterostructure as a promising anode material for rechargeable Li-ion batteries by density functional calculations. J. Phys. Chem. C 123, 30809–30818 (2019)CrossRefGoogle Scholar
  17. 17.
    Shao, Y., Wang, Q., Hu, L., Pan, H., Shi, X.: BC2N monolayers as promising anchoring materials for lithium–sulfur batteries: first-principles insights. Carbon 1(149), 530–537 (2019)CrossRefGoogle Scholar
  18. 18.
    Ghobadi, N., Pourfath, M.: Vertical tunneling graphene heterostructure-based transistor for pressure sensing. IEEE Electron Device Lett. 36(3), 280–282 (2015)CrossRefGoogle Scholar
  19. 19.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)CrossRefGoogle Scholar
  20. 20.
    Le Lay, G.: 2D materials: silicene transistors. Nat. Nanotechnol. 10(3), 202 (2015)CrossRefGoogle Scholar
  21. 21.
    Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A., Puska, M.J.: Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 81(24), 245402 (2010)CrossRefGoogle Scholar
  22. 22.
    Sławińska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010)CrossRefGoogle Scholar
  23. 23.
    Jung, J., MacDonald, A.H.: Tight-binding model for graphene π-bands from maximally localized Wannier functions. Phys. Rev. B 87(19), 195450 (2013)CrossRefGoogle Scholar
  24. 24.
    Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Performance analysis of graphene nanoribbon field effect transistors in the presence of surface roughness. IEEE Trans. Electron Devices 61(4), 1193–1198 (2013)CrossRefGoogle Scholar
  25. 25.
    Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN. Beilstein J. Nanotechnol. 5(1), 1569–1574 (2014)CrossRefGoogle Scholar
  26. 26.
    Sanaeepur, M.: Crosstalk delay and stability analysis of MLGNR interconnects on rough surface dielectrics. IEEE Trans. Nanotechnol. 18, 1181–1187 (2019)CrossRefGoogle Scholar
  27. 27.
    Goharrizi, A.Y., Sanaeepur, M., Sharifi, M.J.: Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping. Superlattice Microstruct. 85, 522–5290 (2015)CrossRefGoogle Scholar
  28. 28.
    Horri, A., Faez, R., Pourfath, M., Darvish, G.: Modeling of a vertical tunneling transistor based on graphene–MoS2 heterostructure. IEEE Trans. Electron Devices 64(8), 3459–3465 (2017)CrossRefGoogle Scholar
  29. 29.
    Sanaeepour, M., Abedi, A., Sharifi, M.J.: Performance analysis of nanoscale single layer graphene pressure sensors. IEEE Trans. Electron Devices 64(3), 1300–1304 (2017)CrossRefGoogle Scholar
  30. 30.
    Horri, A., Faez, R., Pourfath, M., Darvish, G.: A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure. J. Appl. Phys. 121(21), 214503 (2017)CrossRefGoogle Scholar
  31. 31.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  32. 32.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)CrossRefGoogle Scholar
  33. 33.
    Kohn, W.: Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71(5), 1253–1266 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Arak BranchIslamic Azad UniversityArākIran
  2. 2.Department of Electrical Engineering, Faculty of EngineeringArak UniversityArākIran

Personalised recommendations