Advertisement

Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications

  • Akanksha GuptaEmail author
  • D. K. Srivastava
  • J. P. Saini
  • Ramesh Kumar Verma
Article
  • 35 Downloads

Abstract

An attempt is made to improve the impedance bandwidth (S11) of a microstrip antenna by means of the gap-coupling method, yielding a bandwidth of 97.88% for the gap-coupled rectangular microstrip antenna (GC-RMSA) compared with 7.67% for the direct-coupled rectangular microstrip antenna with all dimensions the same. The maximum gain of the proposed (GC-RMSA) design is 6.725 dB with antenna efficiency of 99.86%. The proposed antenna design is analyzed using the IE3D simulator. The microstrip line feed technique is used to energize the antenna, and its performance as a function of the gap between the elements (g) and the width of the feed strip (W) is investigated. The results show that the impedance bandwidth of the gap-coupled antenna depends on the coupling gap between the elements; indeed, as the gap (g) is increased up to a certain level, the bandwidth of the proposed antenna increases, resulting in a wideband characteristic. However, after a certain value of the gap (g), the bandwidth decreases due to spurious radiation, and the antenna characteristic changes from wide to dual band with a corresponding decrease in the bandwidth. The proposed antenna design covers the frequency range from 2.093 to 6.105 GHz, including the C-band, S-band uplink and downlink frequencies, Wi-Fi, Bluetooth, WLAN, and IEEE (a/b/g) standard applications.

Keywords

Bandwidth Gap coupled Direct coupled IE3D Microstrip line feed WLAN 

Notes

References

  1. 1.
    Deschamps, G.A.: Microstrip microwave antennas. Presented at the 3rd USAF symposium on antennas, vol. 1, pp. 189–195 (1953)Google Scholar
  2. 2.
    Munson, R.E., Krutsinger, J.K.: Single slot cavity antennas assembly, U.S. patent no. 3713162 (1973)Google Scholar
  3. 3.
    Munson, R.E.: Conformal microstrip antennas and microstrip phased arrays. IEEE Trans. Antennas Propag. 23, 74–78 (1974)CrossRefGoogle Scholar
  4. 4.
    Howell, J.Q.: Microstrip antenna. IEEE Trans. Antennas Propag. 23(1), 90–93 (1975)CrossRefGoogle Scholar
  5. 5.
    Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham (1980)Google Scholar
  6. 6.
    Kumar, G., Ray, K.P.: Broadband Microstrip Antennas. Artech House Antennas and Propagation library Ingeniería Electrónica, Dedham (2002)Google Scholar
  7. 7.
    Kamakshi, K., Singh, A., Aneesh, M., Ansari, J.A.: Novel design of microstrip antenna with improved bandwidth. Int. J. Microw. Sci. Technol. 2014, 659592 (2014)CrossRefGoogle Scholar
  8. 8.
    Alkanhal, M.A., Sheta, A.F.: A novel dual-band reconfigurable square-ring microstrip antenna. Prog. Electromagn. Res. PIER 70, 337–349 (2007)CrossRefGoogle Scholar
  9. 9.
    Shivnarayan, Vishvakarma, B.R.: Analysis of notch-loaded patch for dual-band operation. Indian J. Radio Space Phys. 35, 435–442 (2006)Google Scholar
  10. 10.
    Abutarboush, H.F., Nilavalan, R., Cheung, S.W., Nasr, K.M., Peter, T., Budimir, D., Raweshidy, H.A.: A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propag. 60(1), 36–43 (2012)CrossRefGoogle Scholar
  11. 11.
    Hu, W., Yin, Y.Z., Yang, X., Ren, X.S.: Compact printed antenna with h shaped stub for dual-band operation. Electron. Lett. 46(25), 1644–1645 (2010)CrossRefGoogle Scholar
  12. 12.
    Ansari, J.A., Singh, P., Dubey, S.K., Khan, R.U., Vishvakarma, B.R.: H-shaped stacked patch antenna for dual band operation. Prog. Electromagn. Res. B 5, 291–302 (2008)CrossRefGoogle Scholar
  13. 13.
    Ang, B.K., Chung, B.K.: A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communication. Prog. Electromagn. Res. 75, 397–407 (2007)CrossRefGoogle Scholar
  14. 14.
    Wi, S.H., Lee, Y.S., Yook, J.G.: Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55(4), 1196–1199 (2007)CrossRefGoogle Scholar
  15. 15.
    Mishra, B., Singh, V., Singh, R.: Gap coupled swastika-shaped patch antenna for X and Ku band applications. In: Optical and Wireless Technologies, Lecture Notes in Electrical Engineering, vol. 546, pp. 449–455. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-6159-3_47 Google Scholar
  16. 16.
    Verma, M.K., Kanaujia, B.K., Saini, J.P., Saini, P.: A novel circularly polarized gap-coupled wideband antenna with DGS for X/Ku-band applications. Electromagnetics 39(3), 186–197 (2019)CrossRefGoogle Scholar
  17. 17.
    Gautam, A.K., Vishvakarma, B.R.: Analysis of varactor loaded active microstrip antenna. Microw. Opt. Technol. Lett. 49(2), 416–421 (2007)CrossRefGoogle Scholar
  18. 18.
    Kumar, P., Singh, G.: Gap coupling a potential method for enhancing the bandwidth of microstrip antennas. Adv. Comput. Tech. Electromagn. 2012, 1–6 (2012).  https://doi.org/10.5899/2012/acte-00110 CrossRefGoogle Scholar
  19. 19.
    Deshmukh, A., Ray, K.P.: Proximity fed gap-coupled half E-shaped microstrip antenna array. Indian Acad. Sci. 40(1), 75–87 (2015)Google Scholar
  20. 20.
    Asthana, A., Vishvakarma, B.R.: Analysis of gap coupled microstrip antenna. Int. J. Electron. 88(6), 707–718 (2001)CrossRefGoogle Scholar
  21. 21.
    Nour, A.A., Fezai, F., Thevenot, M., Arnaud, E., Monediere, T.: A circularly polarized square microstrip parasitic antenna with an improved bandwidth. Microw. Opt. Technol. Lett. 58(3), 597–602 (2016)CrossRefGoogle Scholar
  22. 22.
    Singh, V., Mishra, B., Singh, R.: Anchor shape gap coupled patch antenna for WiMax and WLAN application. Int. J. Comput. Math. Electr. Electron. Eng. 38(1), 263–286 (2019)CrossRefGoogle Scholar
  23. 23.
    Jagtap, S.D., Thakare, R., Gupta, R.K.: Low profile high gain wideband circularly polarized antennas using hexagon shape parasitic patches. Prog. Electromagn. Res. C 95, 15–27 (2019)CrossRefGoogle Scholar
  24. 24.
    Altaf, A., Yang, Y., Lee, K.Y., Hwang, K.C.: Wideband circularly polarized spidron fractal slot antenna with an embedded patch. Int. J. Antennas Propag. 2017, 3595620 (2017).  https://doi.org/10.1155/2017/3595620 CrossRefGoogle Scholar
  25. 25.
    Zhang, J., Lu, W.J., Li, L., Zhu, L., Zhu, H.B.: Wideband dual-mode planar endfire antenna with circular polarisation. Electron. Lett. 52(12), 1000–1001 (2016)CrossRefGoogle Scholar
  26. 26.
    IE3D Electromagnetic Simulation and Optimization Package, version 9.0Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Engineering and TechnologyBundelkhand UniversityJhansiIndia
  2. 2.Bundelkhand Institute of Engineering and TechnologyJhansiIndia
  3. 3.Netaji Subhash University of TechnologyNew DelhiIndia

Personalised recommendations