Advertisement

Calculations of the structural and optoelectronic properties of cubic CdxZn1−xSeyTe1−y semiconductor quaternary alloys using the DFT-based FP-LAPW approach

  • Sayantika Chanda
  • Debankita Ghosh
  • Bimal Debnath
  • Manish Debbarma
  • Rahul Bhattacharjee
  • Surya ChattopadhyayaEmail author
Article
  • 50 Downloads

Abstract

The structural and optoelectronic properties of technologically important CdxZn1−xSeyTe1−y quaternary alloys have been calculated using the density functional theory (DFT)-based full potential (FP)-linearized augmented plane wave (LAPW) approach. The exchange–correlation potentials are calculated using the Perdew–Burke–Ernzerhof (PBE)-generalized gradient approximation (GGA) scheme for the structural properties and both the modified Becke–Johnson (mBJ) and Engel–Vosko (EV)-GGA schemes for the optoelectronic properties. A direct bandgap (\( \varGamma \)\( \varGamma \)) is observed for all the examined compositions in the CdxZn1−xSeyTe1−y quaternary system. At each cationic (Cd) concentration x, the lattice constant decreases while the bulk modulus and bandgap increase nonlinearly with increasing anionic (Se) concentration y. On the other hand, a nonlinear increase in the lattice constant but a decrease in the bulk modulus and bandgap are observed with increasing cationic concentration x at each anionic concentration y. The contour maps calculated for the lattice constant and energy bandgap will be useful for designing new quaternary alloys with desired optoelectronic properties. Several interesting features are observed based on the study of the optical properties of the alloys. The compositional dependence of each calculated zero-frequency limit shows the opposite trend, while each calculated critical point shows a similar trend, with respect to that found for the compositional dependence of the bandgap. Finally, the results of these calculations suggest that ZnTe, InAs, GaSb, and InP are suitable substrates for the growth of several zincblende CdxZn1−xSeyTe1−y quaternary alloys.

Keywords

CdZnSeTe quaternary alloys MBJ and EV-GGA Structural properties Optoelectronic properties Lattice matching ZnTe, InAs, GaSb, and InP substrates 

Notes

Acknowledgements

The authors are grateful to UGC, Govt. of India for financial support to carry out this research work through financial assistance under UGC–SAP program 2016 [ref. no. F.530/23/DRS-I/2018 (SAP-I)].

Supplementary material

10825_2019_1409_MOESM1_ESM.docx (9.5 mb)
Supplementary material 1 (DOCX 9764 kb)

References

  1. 1.
    Nelmes, R.J., McMohan, M.I.: Structural transitions in the group IV, III-V, and II-VI semiconductors under pressure. Semicond. Semimetals 54, 145–246 (1998)CrossRefGoogle Scholar
  2. 2.
    Eckelt, P.: Energy band structures of cubic ZnS, ZnSe, ZnTe, and CdTe (Korringa-Kohn-Rostoker method). Phys. Stat. Sol. 23, 307–312 (1967)CrossRefGoogle Scholar
  3. 3.
    Wang, J., Isshiki, M.: Wide-Band-gap II–VI Semiconductors: Growth and properties. In: Kaspa, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, pp. 325–342. Springer, Berlin (2006)CrossRefGoogle Scholar
  4. 4.
    Adachi, S.: Properties of Group-IV, III–V and II–VI Semiconductors. Wiley, London (2005)CrossRefGoogle Scholar
  5. 5.
    Van de Walle, C.G.: Wide-Band-Gap Semiconductors. North Holland, Amsterdam (1993)Google Scholar
  6. 6.
    Huynh, W.U., Dittmer, J.J., Alivisato, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)CrossRefGoogle Scholar
  7. 7.
    Salavei, A., Rimmaudo, I., Piccinelli, F., Romeo, A.: Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells. Thin Solid Films 535, 257–260 (2013)CrossRefGoogle Scholar
  8. 8.
    Crossay, A., Buecheler, S., Kranz, L., Perrenoud, J., Fella, C.M., Romanyuk, Y.E., Tiwari, A.N.: Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Solar Energy Mater. Sol. Cells 101, 283–288 (2012)CrossRefGoogle Scholar
  9. 9.
    Nakayama, N., Matsumoto, H., Yamaguchi, K., Ikegami, S., Hioki, Y.: Ceramic thin film CdTe solar cell. Jpn. J. Appl. Phys. 15, 2281–2282 (1976)CrossRefGoogle Scholar
  10. 10.
    Shieh, F., Saunders, A.E., Korgel, B.A.: General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109, 8538–8542 (2005)CrossRefGoogle Scholar
  11. 11.
    Peng, Z.A., Peng, X.G.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001)CrossRefGoogle Scholar
  12. 12.
    Colvin, V.L., Schlamp, M.C., Alivisatos, A.P.: Light emitting diodes made from cadmium selenide nanocrystals and a conducting polymer. Nature 370, 354–357 (1994)CrossRefGoogle Scholar
  13. 13.
    Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth. Met. 84, 545–546 (1997)CrossRefGoogle Scholar
  14. 14.
    Xi, L.F., Chua, K.H., Zhao, Y.Y., Zhang, J., Xiong, Q.H., Lam, Y.M.: Controlled synthesis of CdE (E = S, Se and Te) nanowires. RSC Adv. 2, 5243–5253 (2012)CrossRefGoogle Scholar
  15. 15.
    Chen, X., Liu, R., Qiao, S., Mao, J., Du, X.: Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. Mater. Chem. Phys. 212, 408–414 (2018)CrossRefGoogle Scholar
  16. 16.
    Dabbousi, B.O., Bawendi, M.G., Rubner, O.O.: Electroluminescence from CdSe quantumdot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995)CrossRefGoogle Scholar
  17. 17.
    Thuy, U.T.D., Toan, P.S., Chi, T.T.K., Khang, D.D., Liem, N.Q.: CdTe quantum dots for an application in the life sciences. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045009–045014 (2010)CrossRefGoogle Scholar
  18. 18.
    Liyanage, W.P.R., Wilson, J.S., Kinzel, E.C., Dorant, B.K.: Fabrication of CdTe nanorod arrays over large area through patterned electrodeposition for efficient solar energy conversion. Sol. Energy Mater. Sol. Cells 133, 260–267 (2015)CrossRefGoogle Scholar
  19. 19.
    Hasse, M.A., Qui, J., De Puydt, J.M., Cheng, H. Blue-green laser diodes. Appl. Phys. Lett. 59, 1272–1274 (1991)CrossRefGoogle Scholar
  20. 20.
    Wagner, H.P., Wittmann, S., Schmitzer, H., Stanzl, H.: Phase matched second harmonic generation using thin film ZnTe optical waveguides. J. Appl. Phys. 77, 3637–3640 (1995)CrossRefGoogle Scholar
  21. 21.
    Tamargo, M.C., Brasil, M.J.S.P., Nahory, R.E., Martin, R.J., Weaver, A.L., Gilchrist, H.L.: MBE growth of the (Zn, Cd)(Se, Te) system for wide-bandgap heterostructure lasers. Semicond. Sci. Technol. 6, A8–A13 (1991)CrossRefGoogle Scholar
  22. 22.
    Medelung, O.: Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, vol. 17b. Springer, Berlin (1982)Google Scholar
  23. 23.
    Abrikosov, N.K., Bankina, V.B., Poretskaya, L.V., Shelimova, L.E., Skudnova, E.V.: Semiconducting II-VI IV-VI and V-VI Compounds. Plenum, New York (1969)CrossRefGoogle Scholar
  24. 24.
    Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2, 163–199 (1973)CrossRefGoogle Scholar
  25. 25.
    Harrison, W.A.: Electronic Structure and the Properties of Solids. Freeman, San-Francisco (1980)Google Scholar
  26. 26.
    Manabe, A., Mitsuishi, A., Yoshinaga, H.: Infrared lattice reflection spectra of II-VI compounds. Jpn. J. Appl. Phys. 6, 593–600 (1967)CrossRefGoogle Scholar
  27. 27.
    Marple, D.T.F.: Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542 (1964)CrossRefGoogle Scholar
  28. 28.
    Lee, B.H.: Pressure dependence of the second-order elastic constants of ZnTe and ZnSe. J. Appl. Phys. 41, 2988–2990 (1970)CrossRefGoogle Scholar
  29. 29.
    Berlincourt, D., Jaffe, H., Shiozawa, L.R.: Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Phys. Rev. 29, 1009–1017 (1963)CrossRefGoogle Scholar
  30. 30.
    Kim, Y.D., Klein, M.V., Ren, S.F., Chen, Y.C., Lou, H., Samarth, N., Furdyna, J.K.: Optical properties of zinc-blende CdSe and Zn„Cd& Se films grown on GaAs. Phys. Rev. B 49, 7262–7270 (1994)CrossRefGoogle Scholar
  31. 31.
    Garcia, V.M., Nair, M.T.S., Nair, P.K., Zingaro, R.A.: Preparation of highly photosensitive CdSe thin films by a chemical bath deposition technique. Semicond. Sci. Technol. 11, 427–432 (1996)CrossRefGoogle Scholar
  32. 32.
    Toma, O., Ion, L., Girtan, M., Antohe, S.: Optical, morphological and electrical studies of thermally vacuum evaporated CdTe thin films for photovoltaic applications. Sol. Energy 108, 51–60 (2014)CrossRefGoogle Scholar
  33. 33.
    Okamoto, T., Hayashi, R., Ogawa, Y., Hosono, A., Doi, M.: Fabrication of polycrystalline CdTe thin-film solar cells using carbon electrodes with carbon nanotubes. Jpn. J. Appl. Phys. 54, 04DR01–04DR04 (2015)CrossRefGoogle Scholar
  34. 34.
    Kim, Y.D., Cooper, S.L., Klein, M.V.: Optical characterization of pure ZnSe films grown on GaAs. Appl. Phys. Lett. 62, 2387–2389 (1993)CrossRefGoogle Scholar
  35. 35.
    Hsu, C.H., Yan, C.Y., Kao, W.H., Yu, Y.T., Tung, H.H.: Properties of ZnTe thin films on silicon substrate. Ferroelectrics 491, 118–126 (2016)CrossRefGoogle Scholar
  36. 36.
    Camacho, J., Cantarero, A., Hernández-Calderon, I., Gonzalez, L.: Raman spectroscopy and photoluminescence of ZnTe thin films grown on GaAs. J. Appl. Phys. 92, 6014–6018 (2002)CrossRefGoogle Scholar
  37. 37.
    Watanabe, K., Litz, M.T., Korn, M., Ossau, W., Waag, A., Landwehr, G., Schussler, U.: Optical properties of ZnTe/Zn1−xMgxSeyTe1−y quantum wells and epilayers grown by molecular beam epitaxy. J. Appl. Phys. 81, 451–455 (1997)CrossRefGoogle Scholar
  38. 38.
    Muthukumarasamy, N., Velumani, S., Balasundaraprabhu, R., Jayakumar, S., Kannan, M.D.: Fabrication and characterization of n-CdSe0.7Te0.3/p-CdSe0.15Te0.85 solar cell. Vacuum 84, 1216–1219 (2010)CrossRefGoogle Scholar
  39. 39.
    MacDonald, B.I., Martucci, A., Rubanov, S., Watkins, S.E., Mulvaney, P., Jasieniak, J.J.: Layer-by-layer assembly of sintered CdSexTe1–x nanocrystal solar cells. ACS Nano 6, 5995–6004 (2012)CrossRefGoogle Scholar
  40. 40.
    Wen, S., Li, M., Yang, J., Mei, X., Wu, B., Liu, X., Heng, J., Qin, D., Hou, L., Xu, W., Wang, D.: Rationally controlled synthesis of CdSexTe1−x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials 7, 380–392 (2017)CrossRefGoogle Scholar
  41. 41.
    Wen, S., Li, M., Yang, J., Mei, X., Wu, B., Liu, X., Heng, J., Qin, D., Hou, L., Xu, W., Wang, D.: Rationally controlled synthesis of CdSexTe1–x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials (2017).  https://doi.org/10.3390/nano7110380 CrossRefGoogle Scholar
  42. 42.
    Asano, H., Arai, K., Kita, M., Omata, T.: Synthesis of colloidal Zn(Te, Se) alloy quantum dots. Mater. Res. Exp. 4, 106501–106510 (2017)CrossRefGoogle Scholar
  43. 43.
    Xu, F., Xue, B., Wang, F., Dong, A.: Ternary alloyed ZnSexTe1–x nanowires: solution-phase synthesis and band gap bowing. Chem. Mater. 27, 1140–1146 (2015)CrossRefGoogle Scholar
  44. 44.
    Lu, J., Liu, H., Zhang, X., Sow, C.H.: One-dimensional nanostructures of II-VI ternary alloys: synthesis, optical properties, and applications. Nanoscale (2018).  https://doi.org/10.1039/C8NR05019H CrossRefGoogle Scholar
  45. 45.
    Benkert, A., Schumacher, C., Brunner, K., Neder, R.B.: Monitoring of ZnCdSe layer properties by in situ x-ray diffraction during heteroepitaxy on (001) GaAs substrates. Appl. Phys. Lett. 90, 162105–162107 (2007)CrossRefGoogle Scholar
  46. 46.
    Lin, W., Tamargo, M.C., Wei, H.Y., Sarney, W., Salamanca-Riba, L., Fitzpatrick, B.J.: Molecular-beam epitaxy growth and nitrogen doping of hexagonal ZnSe and ZnCdSe/ZnSe quantum well structures on hexagonal ZnMgSSe bulk substrates. J. Vac. Sci. Tech. B 18, 1711–1715 (2000)CrossRefGoogle Scholar
  47. 47.
    Kawakami, Y., Yamaguchi, S., Wu, Y.H., Ichino, K., Fujita, S.Z., Fujita, S.G.: Optically pumped blue-green laser operation above room-temperature in Zn0.80Cd0.20Se-ZnS0.08Se0.92 multiple quantum well structures grown by metalorganic molecular beam epitaxy. Jpn. J. Appl. Phys. 30, L605–L607 (1991)CrossRefGoogle Scholar
  48. 48.
    Yilmaz, E.: An investigation of CdZnTe thin films for photovoltaics. Energy Sources 34, 332–335 (2012)CrossRefGoogle Scholar
  49. 49.
    Rajesh, G., Muthukumarasamy, N., Velauthapillai, D., Mohanta, K., Ragavendran, V., Batabyal, S.K.: Photoinduced electrical bistability of sputter deposited CdZnTe thin films. Mater. Res. Exp. 5, 026412–026419 (2018)CrossRefGoogle Scholar
  50. 50.
    Znamenshchykov, Y.V., Kosyak, V.V., Opanasyuk, A.S., Kolesnyk, M.M., Fochuk, P.M., Cerskus, A.: Structural and optical properties of Cd1-xZnxTe thick films with high Zn concentrations. In: IEEE 7th International Conference on Nanomaterials: Applications and Properties (2017)Google Scholar
  51. 51.
    Wang, L., Chen, C., Jin, G., Feng, T., Du, X., Liu, F., Sun, H., Yang, B., Sun, H.: Manipulating depletion region of aqueous-processed nanocrystals solar cells with widened Fermi level offset. Nano Micro Small (2018).  https://doi.org/10.1002/smll.201803072 CrossRefGoogle Scholar
  52. 52.
    Levy, M., Chowdhury, P.P., Eller, K.A., Chatterjee, A., Nagpal, P.: Tuning ternary Zn1−xCdxTe quantum dot composition: engineering electronic states for light-activated superoxide generation as a therapeutic against multidrug-resistant bacteria. ACS Biomater. Sci. Eng. 5, 3111–3118 (2019)CrossRefGoogle Scholar
  53. 53.
    Chen, Y.P., Brill, G., Campo, E.M., Hierl, T., Hwang, J.C.M., Dhar, N.K.: Molecular beam epitaxial growth of Cd1−yZnySexTe1−x on Si(211). J. Electron. Mater. 33, 498–502 (2004)CrossRefGoogle Scholar
  54. 54.
    Nomura, I., Ochiai, Y., Toyomura, N., Manoshiro, A., Kikuchi, A., Kishino, K.: Yellow–green lasing operations of ZnCdTe/MgZnSeTe laser diodes on ZnTe substrates. Phys. Stat. Sol. B 241, 483–486 (2004)CrossRefGoogle Scholar
  55. 55.
    Brasil, M.J.S.P., Tamargo, M.C., Nahoty, R.E., Gilchrist, H.L., Martin, R.J.: Zn1 − yCdySe1 − xTex quaternary wide band-gap alloys: molecular beam epitaxial growth and optical properties. Appl. Phys. Lett. 59, 1206–1208 (1991)CrossRefGoogle Scholar
  56. 56.
    Gaikwad, S.A., Tembhurkar, Y.D., Dudhe, C.M.: Study of optical, morphological and electrical properties of CdZnSeTe thin films prepared by spray pyrolysis method. Int. J. Pure Appl. Phys. 13, 339–347 (2017)Google Scholar
  57. 57.
    Roy, U.N., Camarda, G.S., Cui, Y., Gul, R., Yang, G., Zazvorka, J., Dedic, V., Franc, J., James, R.B.: Evaluation of CdZnTeSe as a high quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports (2019).  https://doi.org/10.1038/s41598-019-43778-3
  58. 58.
    Huang, M.Z., Ching, W.Y.: A minimal basis semi-ab initio approach to the band structures of semiconductors. J. Phys. Chem. Solids 46, 977–995 (1985)CrossRefGoogle Scholar
  59. 59.
    Huang, M.Z., Ching, W.Y.: Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response. Phys. Rev. B 47, 9449–9463 (1993)CrossRefGoogle Scholar
  60. 60.
    Deligoz, E., Colakoglu, K., Ciftci, Y.: Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B 373, 124–130 (2006)CrossRefGoogle Scholar
  61. 61.
    Ouendadji, S., Ghemid, S., Meradji, H., El Haj Hassan, F.: Theoretical study of structural, electronic, and thermal properties of CdS, CdSe and CdTe compounds. Comput. Mater. Sci. 50, 1460–1466 (2011)CrossRefGoogle Scholar
  62. 62.
    Sharma, S., Verma, A.S., Sarkar, B.K., Bhandari, R., Jindal, V.K.: First principles study on the elastic and electronic properties of CdX (Se and Te). AIP Conf. Proc. 1393, 229–230 (2011)CrossRefGoogle Scholar
  63. 63.
    Wei, S.H., Zhang, S.B.: Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors. Phys. Rev. B 62, 6944–6947 (2000)CrossRefGoogle Scholar
  64. 64.
    Guo, L., Zhang, S., Feng, W., Hu, G., Li, W.: A first-principles study on the structural, elastic, electronic, optical, lattice dynamical, and thermodynamic properties of zinc-blende CdX (X = S, Se, and Te). J. Alloys Compd. 579, 583–593 (2013)CrossRefGoogle Scholar
  65. 65.
    Sarkar, S., Pal, S., Sarkar, P., Rosa, A.L., Frauenheim, Th: Self-consistent-charge density-functional tight-binding parameters for Cd–X (X = S, Se, Te) compounds and their interaction with H, O, C, and N. J. Chem. Theor. Comput. 7, 2262–2276 (2011)CrossRefGoogle Scholar
  66. 66.
    Cote, M., Zakharov, O., Rubio, A., Cohen, M.L.: Ab initio calculations of the pressure-induced structural phase transitions for four II-VI compounds. Phys. Rev. B 55, 13025–13031 (1997)CrossRefGoogle Scholar
  67. 67.
    Hosseini, S.M.: Optical properties of cadmium telluride in zinc-blende and wurzite structure. Phys. B 403, 1907–1915 (2008)CrossRefGoogle Scholar
  68. 68.
    Corsa, A.D., Baroni, S., Resta, R., Gironcoli, S.: Ab initio calculation of phonon dispersions in II-VI semiconductors. Phys. Rev. B 47, 3588–3592 (1993)CrossRefGoogle Scholar
  69. 69.
    Zakharov, O., Rubio, A., Blase, X., Cohen, M.L., Loui, S.G.: Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B 50, 10780–10787 (1994)CrossRefGoogle Scholar
  70. 70.
    Chen, X.J., Mintz, A., Hu, J.S., Hua, X.L., Zinck, J., Goddard-III, W.A.: First principles studies of band offsets at heterojunctions and of surface reconstruction using Gaussian dual-space density functional theory. J. Vac. Sci. Technol. B 13, 1715–1727 (1995)CrossRefGoogle Scholar
  71. 71.
    Heyd, J., Peralta, J.E., Scuseria, G.E.: Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101–174107 (2005)CrossRefGoogle Scholar
  72. 72.
    Kootstra, F., de Boeij, P.L., Snijders, J.G.: Application of time-dependent density-functional theory to the dielectric function of various nonmetallic crystals. Phys. Rev. B 62, 7071–7083 (2000)CrossRefGoogle Scholar
  73. 73.
    Wang, C.S., Klein, B.M.: First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. I. Self-consistent energy bands, charge densities, and effective masses. Phys. Rev. B 24, 3393–3416 (1981)CrossRefGoogle Scholar
  74. 74.
    Jansen, R.W., Sankey, O.F.: Ab initio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Phys. Rev. B 36, 6520–6531 (1987)CrossRefGoogle Scholar
  75. 75.
    Fleszar, A., Hanke, W.: Electronic structure of IIB-VI semiconductors in the GW approximation. Phys. Rev. B 71, 045207–045211 (2005)CrossRefGoogle Scholar
  76. 76.
    Oshikiri, M., Aryasetiawan, F.: Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation. Phys. Rev. B 60, 10754–10757 (1999)CrossRefGoogle Scholar
  77. 77.
    Lee, G.D., Lee, M.H., Ihm, J.: Role of d electrons in the zinc-blende semiconductors Zns, Znse, and ZnTe. Phys. Rev. B 52, 1459–1462 (1995)CrossRefGoogle Scholar
  78. 78.
    Lee, S.G., Chang, K.J.: First-principles study of the structural properties of MgS-, MgSe-, ZnS-, and ZnSe-based superlattices. Phys. Rev. B 52, 1918–1925 (1995)CrossRefGoogle Scholar
  79. 79.
    Casali, R.A., Christensen, N.E.: Elastic constants and deformation potentials of ZnS and ZnSe under pressure. Solid State Commun. 108, 793–798 (1998)CrossRefGoogle Scholar
  80. 80.
    Gangadharan, R., Jayalakshmi, V., Kalaiselvi, J., Mohan, S., Murugan, R., Palanivel, B.: Electronic and structural properties of zinc chalcogenides ZnX (X = S, Se, Te). J. Alloys Compd. 359, 22–26 (2003)CrossRefGoogle Scholar
  81. 81.
    Smelyansky, V.I., Tse, J.S.: Theoretical study on the high-pressure phase transformation in ZnSe. Phys. Rev. B 52, 4658–4661 (1995)CrossRefGoogle Scholar
  82. 82.
    Okoye, C.M.I.: First-principles study of the electronic and optical properties of zincblende zinc selenide. Phys. B 337, 1–9 (2003)CrossRefGoogle Scholar
  83. 83.
    Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., Rabah, M.: Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29–38 (2006)CrossRefGoogle Scholar
  84. 84.
    Bilal, M., Shafiq, M., Ahmad, I., Khan, I.: First principle studies of structural, elastic, electronic and optical properties of Zn-chalcogenides under pressure. J. Semicond. 35, 072001–072009 (2014)CrossRefGoogle Scholar
  85. 85.
    Shakil, M., Zafar, M., Ahmed, S., Raza-ur-rehman, Hashmi M., Choudhary, M.A., Iqbal, T.: Theoretical calculations of structural, electronic, and elastic properties of CdSe1 − xTex: a first principles study. Chin. Phys. B 25, 076104–076110 (2016)CrossRefGoogle Scholar
  86. 86.
    Reshak, A.H., Kityk, I.V., Khenata, R., Auluck, S.: Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe1−xTex: an ab initio study. J. Alloys Compd. 509, 6737–6750 (2011)CrossRefGoogle Scholar
  87. 87.
    Ouendadji, S., Ghemid, S., Bouarissa, N., Meradji, H., El Haj Hassan, F.: Ab initio study of structural, electronic, phase diagram, and optical properties of CdSexTe1−x semiconducting alloys. J. Mater. Sci. 46, 3855–3861 (2011)CrossRefGoogle Scholar
  88. 88.
    Bernard, J.E., Zunger, A.: Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992–5996 (1986)CrossRefGoogle Scholar
  89. 89.
    Ozaki, S., Adachi, S.: Optical constants of ZnSexTe1-xternary alloys. Jpn. J. Appl. Phys. 32, 2620–2625 (1993)CrossRefGoogle Scholar
  90. 90.
    Zaoui, A., Certier, M., Ferhat, M., Pages, O., Aourag, H.: Disorder effects on electronic and optical properties in ZnSexTe1−x. J. Cryst. Growth 184–185, 1090–1094 (1998)CrossRefGoogle Scholar
  91. 91.
    El Haj Hassan, F., Amrani, B., Bahsoun, F.: Ab initio investigations of zinc chalcogenides semiconductor alloys. Phys. B 391, 363–370 (2007)CrossRefGoogle Scholar
  92. 92.
    Zhu, Y., Zhang, S.H., Zhang, X.Y., Hao, A.M., Zhang, S.L., Yang, F., Yang, J.K., Liu, R.P.: Structural, elastic, and thermodynamic properties of ZnSexTe1−x: a first-principles study. Comput. Mater. Sci. 50, 2745–2749 (2011)CrossRefGoogle Scholar
  93. 93.
    Korozlu, N., Colakoglu, K., Deligoz, E., Ciftci, Y.O.: The structural, electronic and optical properties of CdxZn1−xSe ternary alloys. Opt. Commun. 284, 1863–1867 (2011)CrossRefGoogle Scholar
  94. 94.
    Ameri, M., Fodil, M., Benkabou, F.Z.A., Mahdjoub, Z., Boufadi, F., Bentouaf, A.: Physical properties of the ZnxCd1-xSe alloys: ab-initio method. Mater. Sci. Appl. 3, 768–778 (2012)Google Scholar
  95. 95.
    Mnasri, S., Abdi-Ben Nasrallah, S., Sfina, N., Bouarissa, N., Said, M.: Electronic, lattice vibration and mechanical properties of CdTe, ZnTe, MnTe, MgTe, HgTe and their ternary alloys. Semicond. Sci. Technol. 24, 095008–095015 (2009)CrossRefGoogle Scholar
  96. 96.
    Korozlu, N., Colakoglu, K., Deligoz, E.: Structural, electronic, elastic and optical properties of CdxZn1−xTe mixed crystals. J. Phys. Condens. Matter 21, 175406–175412 (2009)CrossRefGoogle Scholar
  97. 97.
    Bouarissa, N., Atik, Y.: Elastic constants and acoustic wave velocities in Cd1-xZnxTe mixed crystals. Mod. Phys. Lett. B 22, 1221–1229 (2008)zbMATHCrossRefGoogle Scholar
  98. 98.
    Yassin, O.A.: Electronic and optical properties of Zn0.75Cd0.25S1−zSez first-principles calculations based on the Tran-Blaha modified Becke-Johnson potential. Optik 127, 1817–1821 (2016)CrossRefGoogle Scholar
  99. 99.
    Murtaza, G., Ullah, N., Rauf, A., Khenata, R., Bin Omran, S., Sajjad, M., Waheed, A.: First principles study of structural, optical, and electronic properties of zinc mercury chalcogenides. Mater. Sci. Semicond. Proc. 30, 462–468 (2015)CrossRefGoogle Scholar
  100. 100.
    Noor, N.A., Tahir, W., Aslam, F., Shaukat, A.: Ab initio study of structural, electronic and optical properties of Be-doped CdS, CdSe and CdTe compounds. Physica B 407, 943–952 (2012)CrossRefGoogle Scholar
  101. 101.
    Zhou, J.: Recent progress on 2D group II-VI binary chalcogenides ZnX and CdX (X = S, Se, Te): from a theoretical perspective. Adv. Theory Simul. (2019).  https://doi.org/10.1002/adts.201900061 CrossRefGoogle Scholar
  102. 102.
    Mezrag, F., Bouarissa, N., Boucenna, M., Hannachi, L.: The effect of zinc concentration upon optical and dielectric properties of Cd1-xZnxSe. Phys. Scr. 82, 035702–035706 (2010)CrossRefGoogle Scholar
  103. 103.
    Benkabou, K., Amrane, N., Maachou, M.: Electronic band structure of quaternary alloy ZnyCd1−ySexTe1−x. J. Alloys Compd. 465, 305–309 (2008)CrossRefGoogle Scholar
  104. 104.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)MathSciNetCrossRefGoogle Scholar
  105. 105.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRefGoogle Scholar
  106. 106.
    Reshak, A. H.: Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Scientific Reports (2017).  https://doi.org/10.1038/srep46415
  107. 107.
    Reshak, A.H.: Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16, 10558–10565 (2014)CrossRefGoogle Scholar
  108. 108.
    Davydyuk, G.E., Khyzhun, O.Y., Reshak, A.H., Kamarudind, H., Myronchuk, G.L., Danylchuk, S.P., Fedorchuk, A.O., Piskach, L.V., Mozolyuk, MYu., Parasyuk, O.V.: Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys. Chem. Chem. Phys. 15, 6965–6972 (2013)CrossRefGoogle Scholar
  109. 109.
    Reshak, A.H., Kogut, Y.M., Fedorchuk, A.O., Zamuruyeva, O.V., Myronchuk, G.L., Parasyuk, O.V., Kamarudin, H., Auluck, S., Plucinski, K.J., Bila, J.: Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys. Chem. Chem. Phys. 15, 18979–18986 (2013)CrossRefGoogle Scholar
  110. 110.
    Reshak, A.H., Stys, D., Auluck, S., Kityk, I.V.: Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys. 13, 2945–2952 (2011)CrossRefGoogle Scholar
  111. 111.
    Reshak, A.H.: Fe2MnSixGe1-x: influence thermoelectric properties of varying the germanium content. RSC Adv. 4, 39565–39571 (2014)CrossRefGoogle Scholar
  112. 112.
    Reshak, A.H.: Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 4, 63137–63142 (2014)CrossRefGoogle Scholar
  113. 113.
    Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 42, 3063–3083 (1975)Google Scholar
  114. 114.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 59, 339–415 (1990)CrossRefGoogle Scholar
  115. 115.
    Blaha, P., Schwarz, K., Madsen, G.H., Kbasnicka, D., Luitz, J.: FP-LAPW+lo program for calculating crystal properties, Technische. WIEN2K, Austria, (2001)Google Scholar
  116. 116.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  117. 117.
    Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101–221104 (2006)CrossRefGoogle Scholar
  118. 118.
    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226404 (2009)CrossRefGoogle Scholar
  119. 119.
    Engel, E., Vosko, S.H.: Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47, 13164–13174 (1993)CrossRefGoogle Scholar
  120. 120.
    Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003). Code available from http://www.xcrysden.org/
  121. 121.
    Hacini, K., Meradji, H., Ghemid, S., El Haj Hassan, F.: Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1−xBexSySe1−y. Chin. Phys. B 21, 036102–036108 (2012)CrossRefGoogle Scholar
  122. 122.
    Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Vegard, L.: The constitution of the mixed crystals and the space filling of the atoms. Z. Phys. 5, 17–26 (1921)CrossRefGoogle Scholar
  124. 124.
    Jobst, B., Hommel, D., Lunz, U., Gerhard, T., Landwehr, G.: E 0 band-gap energy and lattice constant of ternary Zn1−xMgxSe as functions of composition. Appl. Phys. Lett. 69, 97–99 (1996)CrossRefGoogle Scholar
  125. 125.
    Dismukes, J.P., Ekstrom, L., Paff, R.J.: Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68, 3021–3027 (1964)CrossRefGoogle Scholar
  126. 126.
    Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2001)Google Scholar
  127. 127.
    Sifi, C., Meradrji, H., Silmani, M., Labidi, S., Ghemid, S., Hanneche, E.B., El Haj Hassan, F.: First principle calculations of structural, electronic, thermodynamic and optical properties of Pb1−xCaxS, Pb1−xCaxSe and Pb1−xCaxTe ternary alloys. J. Phys. Cond. Matter 21, 195401–195409 (2009)CrossRefGoogle Scholar
  128. 128.
    Dadsetani, M., Pourghazi, A.: Optical properties of strontium monochalcogenides from first principles. Phys. Rev. B 73, 195102–195108 (2006)CrossRefGoogle Scholar
  129. 129.
    Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)zbMATHCrossRefGoogle Scholar
  130. 130.
    Okuyama, H., Kishita, Y., Ishibashi, A.: Quaternary alloy Zn1-xMgxSySe1-y. Phys. Rev. B 57, 2257–2263 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sayantika Chanda
    • 1
  • Debankita Ghosh
    • 1
  • Bimal Debnath
    • 1
  • Manish Debbarma
    • 1
  • Rahul Bhattacharjee
    • 1
    • 2
  • Surya Chattopadhyaya
    • 1
    Email author
  1. 1.Department of PhysicsTripura UniversityAgartalaIndia
  2. 2.Department of PhysicsWomen’s CollegeAgartalaIndia

Personalised recommendations