Advertisement

Enhancement of the frequency peak of terahertz photoconductive antennas using metamaterial (MTM) superstrate structures

  • Amir Alizadeh
  • Majid NazeriEmail author
  • Ahmad Sajedi Bidgoli
Article
  • 52 Downloads

Abstract

A new design based on a metamaterial superstrate structure for THz photoconductive antennas is reported herein. To enhance the THz output frequency peaks, the use of metamaterials on THz photoconductive antennas is proposed, and simulated by using the CST Microwave Studio software. Use of such a metamaterial superstrate structure over the electrodes of an antenna leads to an enhancement of the frequency peak from 0.8 to 1.3 THz.

Keywords

Photoconductive THz Metamaterial superstrate Unit cell Negative permittivity 

Notes

References

  1. 1.
    Tonouchi, M.: Cutting-edge THz technology. Nat. Photonics 1, 97–105 (2007)CrossRefGoogle Scholar
  2. 2.
    Auston, D.H., Chung, K.P., Smith, P.R.: Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 45, 284 (1984)CrossRefGoogle Scholar
  3. 3.
    Vodopyanov, K.L.: Optical THz-wave generation with periodically-inverted GaAs. Laser Photon. Rev. 2(1–2), 11–25 (2008)CrossRefGoogle Scholar
  4. 4.
    Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36(30), 7853–7859 (1997)CrossRefGoogle Scholar
  5. 5.
    Brener, I., Dykaar, D., Frommer, A., Pfeiffer, L.N., Lopata, J., Wynn, J., West, K.: THz emission from electric field singularities in biased semiconductor. Opt. Lett. 21, 1924–1926 (1996)CrossRefGoogle Scholar
  6. 6.
    Kim, J.H., Polley, A., Ralph, S.E.: Efficient photoconductive THz source using line excitation. Opt. Lett. 30, 2490–2492 (2005)CrossRefGoogle Scholar
  7. 7.
    Zhang, J.: Characterization of the THz photoconductive antenna by three-dimensional finite difference time-domain method. arXiv:1406-3872, pp. 1–21 (2014)
  8. 8.
    Piao, Z., Tani, M., Sakai, K.: Carrier dynamics and THz radiation in photoconductive antennas. Jpn. J. Appl. Phys. 39, 96–100 (2000)CrossRefGoogle Scholar
  9. 9.
    Nazeri, M., Massudi, R.: Study of a large area THz antenna by using a finite difference time domain method and lossy transmission line. Semicond. Sci. Technol. 25, 045007 (2010)CrossRefGoogle Scholar
  10. 10.
    Park, S.G., Jin, K.H., Yi, M., Ahn, J., Jeong, K.H.: Enhancement of THz pulse emission by optical nanoantenna. ACS Nano 6, 2026–2031 (2012)CrossRefGoogle Scholar
  11. 11.
    Singh, A., Surdi, H., Nikesh, V.V., Prabhu, S.S., Dohler, G.H.: Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes. AIP Adv. 3, 122106 (2013)CrossRefGoogle Scholar
  12. 12.
    Zolfagharloo Koohi, M., Neshat, M.: Evaluation of graphene-based THz photoconductive antennas. Sci. Iran. 23, 1299–1305 (2015)Google Scholar
  13. 13.
    Khiabani, N., Huang, Y., Garcia, L.E., Shen, Y., Lavado, A.: A novel sub-THz photomixer with nano trapezoidal electrodes. IEEE Trans. Terahertz Sci. Technol. 4, 501–508 (2014)CrossRefGoogle Scholar
  14. 14.
    Nazeri, M., Sajedi, A.: Change of THz antenna spectrum when surrounding dielectric alters. Optik 183, 650–655 (2019)CrossRefGoogle Scholar
  15. 15.
    Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36, 7853–7859 (1997)CrossRefGoogle Scholar
  16. 16.
    Duvillaret, L., Garet, F., Roux, J.-F., Coutaz, J.-L.: Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE J. Sel. Quantum Electron. 7, 615–623 (2001)CrossRefGoogle Scholar
  17. 17.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative value of epsilon and mu. Sov. Phys. Usp. 10(4), 509–514 (1968)CrossRefGoogle Scholar
  18. 18.
    Balmaz, P., Martin, O.: Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92, 2929 (2002)CrossRefGoogle Scholar
  19. 19.
    Smith, D.R., Vier, D.C., Koschny, Th, Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)CrossRefGoogle Scholar
  20. 20.
    Maier, S.A.: Plasmonics: fundamentals and applications. Springer, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of KashanKashanIran

Personalised recommendations