Journal of Computational Electronics

, Volume 18, Issue 4, pp 1455–1468 | Cite as

Numerical demonstration of hexagonal-shaped dual-core-based photonic crystal fiber for a wide telecommunication window

  • Md. Asaduzzaman Jabin
  • Md. Zamiya Zaman Tanmay
  • Foyj Ullah Khan
  • Yunus Ahmed
  • Md. Juwel Rana
  • Mahmudul Hasan
  • Shafikul Islam
  • Moktarul Islam
  • Bikash Kumar Paul
  • Dhasarathan Vigneswaran
  • Kawsar AhmedEmail author


This paper proposes a novel hexagonal-shaped dual-core photonic crystal fiber (HX-PCF) for a wide telecom window. We test different optical parameters including birefringence (Bi), power fraction (\(\eta^{\prime}\)), effective area (Aeff), numerical aperture (NA), nonlinear coefficient (\(\gamma\)), v-parameter, chromatic dispersion (\(\beta_{2}\)), transmittance) (\(T_{x}\)), and relative sensitivity (\(R_{\text{s}}\)) and loss profiles including effective material loss, confinement loss (\(\alpha_{\text{c}}\)), scattering loss (\(\alpha_{\text{sc}}\)), and bending loss (\(\alpha_{\text{bl}}\)) compared with the most recent models. In addition, the finite element method is employed on wavelength-division multiplexing with 310,534 mesh elements over a wide telecom window wavelength range of 1500–3000 nm and porosity of 30–60%. The proposed HX-PCF displays outstanding performance for these parameters. The optimal key performance indicator profiles are 2.2 × 10−3, 99.79%, 1.69 × 10−11 m2, 0.99, 0.203 m−1, 10−9 dB/m, 18.5 × 10−3 dB/m, 10−8 dB/m, 9.1 × 1010 W−1 km−1, 185 ps/(, −240 dB, and 41.75%, respectively, for the corresponding optical parameters of Bi, \(\eta^{\prime}\), Aeff, NA, \(\alpha_{\text{EML}}\), \(\alpha_{\text{c}}\), \(\alpha_{\text{sc}}\), \(\alpha_{\text{bl}}\), \(\gamma ,\)\(\beta_{2}\), \(T_{x}\), and \(R_{\text{s}}\). This fiber is more promising than any previous model, based on ultra-flattened dispersion, high nonlinearity, high NA, transmittance, and relative sensing, along with very low loss profiles. Moreover, it is shown to be a good candidate for telecommunication, optoelectronics, four-wave mixing, fiber loop mirroring, and other high-speed transmission media.


Ultra-flattened dispersion Nonlinearity Numerical aperture Different loss profiles Relative sensitivity 



  1. 1.
    Buck, J.A.: Fundamentals of Optical Fibers. Wiley, New York (2004)Google Scholar
  2. 2.
    Soussi, S.: Modeling photonic crystal fibers. Adv. Appl. Math. 6, 288–317 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Habib, M.S., Ahmad, R., Habib, S., Hasan, M.I.: Residual dispersion compensation over the S+ C+ L+ U wavelength bands using highly birefringent octagonal photonic crystal fiber. Appl. Opt. 53, 3057–3062 (2014)CrossRefGoogle Scholar
  4. 4.
    Carvalho, J.P., et al.: Remote system for detection of low levels of methane based on photonic crystal fires and wavelength modulation spectroscopy. J. Sens. 1, 398403 (2009)Google Scholar
  5. 5.
    Emiliyanov, G., Høiby, P.E., Pedersen, L.H., Bang, O.: Selective serial multi-antibody bio-sensing with TOPAS microstructured polymer optical fibers. Sensors 13, 3242–3251 (2013)CrossRefGoogle Scholar
  6. 6.
    Woodward, R.M., Wallace, V.P., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2–3), 257–259 (2003)CrossRefGoogle Scholar
  7. 7.
    Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., et al.: Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016). CrossRefGoogle Scholar
  8. 8.
    Zhang, J.Q., Grischkowsky, D.: Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt. Lett. 29(14), 617–1619 (2004). CrossRefGoogle Scholar
  9. 9.
    Awad, M.M., Cheville, R.A.: Transmission terahertz waveguide based imaging below the diffraction limit. Appl. Phys. Lett. 86(22), 221107-1–221107-3 (2005)CrossRefGoogle Scholar
  10. 10.
    Cook, D.J., Decker, B.K., Allen, M.G.: Quantitative THz spectroscopy of explosive materials. In: OSA Conference, PSI-SR1196 (2005).
  11. 11.
    Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11(20), 2549–2554 (2003). CrossRefGoogle Scholar
  12. 12.
    Ho, L., Pepper, M., Taday, P.: Terahertz spectroscopy: signatures and fingerprints. Nat Photonics 2(9), 541 (2008). CrossRefGoogle Scholar
  13. 13.
    Islam, R., Habib, M.S., Hasanuzzaman, G.K., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol. Lett. 28(14), 1537–1540 (2016). CrossRefGoogle Scholar
  14. 14.
    Li, Y., Hu, X., Liu, F., Li, J., Xing, Q., Hu, M., Wang, C.: Terahertz waveguide emitters in photonic crystal fiber form. J. Opt. Soc. Am. B 29(11), 3114–3118 (2012). CrossRefGoogle Scholar
  15. 15.
    Kaijage, S.F., Ouyang, Z., Jin, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013)CrossRefGoogle Scholar
  16. 16.
    Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
  17. 17.
    Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRefGoogle Scholar
  18. 18.
    Knight, J.C.: Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998). CrossRefGoogle Scholar
  19. 19.
    Soussi, S.: Modeling photonic crystal fibers. Adv. Appl. Math. 36, 288 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Knight, C.J.: Photonic crystal fires. Nature 424, 847 (2003)CrossRefGoogle Scholar
  21. 21.
    Ferrando, A., Silvestre, E., Miret, J.J., Andres, P.: Nearly zero ultra-flattened dispersion in photonic crystal fibers. Opt. Lett. 25, 790–792 (2000). CrossRefGoogle Scholar
  22. 22.
    Maji, P.S., Chaudhuri, P.R.: Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation. Opt. Commun. (2014). CrossRefGoogle Scholar
  23. 23.
    Birks, T.A., Mogilevtsev, D., Knight, J.C., Russell, P.S.: Dispersion compensation using single-material fibers. IEEE Photonics Technol. Lett. 11, 674–676 (1999). CrossRefGoogle Scholar
  24. 24.
    Poli, F., Foroni, M., Bottacini, M., Fuochi, M., Burani, N., Rosa, L., et al.: Single-mode regime of square-lattice photonic crystal fibers. JOSA A. 22, 1655–1661 (2005). CrossRefGoogle Scholar
  25. 25.
    Ehteshami, N., Sathi, V.: A novel broadband dispersion compensating square-lattice photonic crystal fiber. Opt. Quantam Electron 44, 323–335 (2012). CrossRefGoogle Scholar
  26. 26.
    Hasan, M.I., Habib, M.S., Razzak, S.A.: Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photonics Nanostruct. Fundam. Appl. 12, 205–211 (2014). CrossRefGoogle Scholar
  27. 27.
    Hasan, M.R., Islam, M.A., Rifat, A.A., Hasan, M.I.: A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64, 218–225 (2017). CrossRefGoogle Scholar
  28. 28.
    Liao, J., Yang, F., Xie, Y., Wang, X., Huang, T., Xiong, Z., et al.: Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photonics Technol. Lett. 27, 1868–1871 (2015). CrossRefGoogle Scholar
  29. 29.
    Rana, S., Hasanuzzaman, G.K., Habib, S., Kaijage, S.F., Islam, R.: Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding. Opt. Eng. 53(11), 115107 (2014). CrossRefGoogle Scholar
  30. 30.
    Sen, S., Islam, M.S., Paul, B.K., Islam, M.I., Chowdhury, S., Ahmed, K., Hasan, M.R., Uddin, M.S., Asaduzzaman, S.: Ultra-low loss with single mode polymer-based photonic crystal fiber for THz waveguide. J. Opt. Commun. (2017). CrossRefGoogle Scholar
  31. 31.
    Islam, M.I., Ahmed, K., Sen, S., Paul, B.K., Islam, M.S., Chowdhury, S., Hasan, M.R., Uddin, M.S., Asaduzzaman, S., Bahar, A.N.: Proposed square lattice photonic crystal fiber for extremely high nonlinearity, birefringence and ultra-high negative dispersion compensation. J. Opt. Commun. (2019). CrossRefGoogle Scholar
  32. 32.
    Suganthy, M., Paul, B.K., Ahmed, K., Islam, M.I., Jabin, M.A., Bahar, A.N., Mani Rajan, M.S.: Analysis of optical sensitivity of analytes in aqua solutions. Optik (2018). CrossRefGoogle Scholar
  33. 33.
    Ayyanar, N., Raja, R.V.K., Vigneswaran, D., Lakshmi, B., Sumathi, M., Porsezian, K.: Highly efficient compact temperature sensor using liquid infiltrated asymmetric dual elliptical core photonic crystal fiber. Opt. Mater. 64, 574–582 (2017)CrossRefGoogle Scholar
  34. 34.
    Sultana, J., Islam, M.S., Ahmed, K., Dinovitser, A., Ng, B.W.-H., Abbot, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2432 (2018)CrossRefGoogle Scholar
  35. 35.
    Lines, M.E.: Scattering losses in optic fiber materials. I. A new parameterization. J. Appl. Phys. 55, 4052 (1984). CrossRefGoogle Scholar
  36. 36.
    Habib, M.A., Anower, M.S.: Design and numerical analysis of highly birefringent single mode fiber in THz regime. Opt. Fiber Technol. 47, 197–203 (2019)CrossRefGoogle Scholar
  37. 37.
    Hasan, M.R., Islam, M.A., Anower, M.S., Razzak, S.M.: Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl. Opt. 55(30), 8441–8447 (2016). CrossRefGoogle Scholar
  38. 38.
    Islam, R., Rana, S., Ahmad, R., Kaijage, S.F.: Bend-insensitive and low-loss porous core spiral terahertz fiber. IEEE Photonics Technol. Lett. 27(21), 2242–2245 (2015). CrossRefGoogle Scholar
  39. 39.
    Hasan, M.R., Islam, M.A., Rifat, A.A.: A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J. Eur. Opt. Soc. Rapid. Publ. 12(1), 15 (2016). CrossRefGoogle Scholar
  40. 40.
    Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., et al.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56(12), 3477–3483 (2017). CrossRefGoogle Scholar
  41. 41.
    Haque, M.M., Rahman, M.S., Habib, M.S.: A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photonics Nanostruct. Fundam. Appl. 14, 63–70 (2015). CrossRefGoogle Scholar
  42. 42.
    Islam, M., et al.: Broadband dispersion compensation of single mode fiber by using modified decagonal photonic crystal fiber having high birefringence. J. Lasers Opt. Photonics (2015). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Md. Asaduzzaman Jabin
    • 1
  • Md. Zamiya Zaman Tanmay
    • 1
  • Foyj Ullah Khan
    • 1
  • Yunus Ahmed
    • 1
  • Md. Juwel Rana
    • 1
  • Mahmudul Hasan
    • 1
  • Shafikul Islam
    • 1
  • Moktarul Islam
    • 1
  • Bikash Kumar Paul
    • 1
    • 2
    • 3
  • Dhasarathan Vigneswaran
    • 4
    • 5
  • Kawsar Ahmed
    • 1
    • 2
    Email author
  1. 1.Department of Information and Communication Technology (ICT)Mawlana Bhashani Science and Technology University (MBSTU)Santosh, TangailBangladesh
  2. 2.Group of Bio-photomatiχMawlana Bhashani Science and Technology University (MBSTU)Santosh, TangailBangladesh
  3. 3.Department of Software Engineering (SWE)Daffodil International UniversityShukrabad, DhakaBangladesh
  4. 4.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations