Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1128–1138 | Cite as

Heteroaromatic rings as linkers for quercetin-based dye-sensitized solar cell applications: a TDDFT investigation

  • M. Megala
  • Beulah J. M. RajkumarEmail author
Article
  • 57 Downloads

Abstract

The electronic properties of quercetin (Q)–π–cyanoacrylic acid (CNA) dye molecules using heteroaromatic rings, namely cyclopentadiene (F1), furan (F2), pyrrole (F3), thiophene (F4), oxazole (F5), imidazole (F6), thiazole (F7), isoindene (FF1), benzofuran (FF2), indole (FF3), benzothiophene (FF4), benzoxazole (FF5), benzimidazole (FF6), and benzothiazole (FF7), as π-linkers are studied for the first time using Time-Dependent Density Functional Theory (TDDFT) with dimethyl sulfoxide (DMSO) as solvent to predict their excitation energy, absorption wavelength, oscillator strength, light harvesting efficiency, and exciton binding energy. The charge transfer and charge regeneration in the ground and excited states of the dyes are established. The photon to electron energy transfer from the dye (quercetin) to the semiconductor (TiO2) surface is analyzed based on intramolecular charge transfer. The results of the electron transfer studies on these newly designed dyes could be used to enhance the performance of resulting dye-sensitized solar cells.

Graphic abstract

Keywords

Dye-sensitized solar cell Quercetin dye Molecular orbital Absorption spectra Light harvesting efficiency 

Notes

Supplementary material

10825_2019_1398_MOESM1_ESM.docx (233 kb)
Supplementary material 1 (DOCX 234 kb)

References

  1. 1.
    Gratzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145–153 (2003)CrossRefGoogle Scholar
  2. 2.
    Duncan, W.R., Prezhdo, O.V.: Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem. 58, 143–184 (2007)CrossRefGoogle Scholar
  3. 3.
    Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)CrossRefGoogle Scholar
  4. 4.
    Lee, M.J., Balanay, M.P., Kim, D.H.: Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells. Theor. Chem. Acc. 131, 1269–1280 (2012)CrossRefGoogle Scholar
  5. 5.
    Irfan, A., Al-sehemi, A.G.: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection. J. Mol. Model. 18, 4893–4900 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhang, C.R., Liu, L., Zhe, J.W., JinN, Z., Yuan, L.H., Chen, Y.H., Wei, Z.Q., Wu, Y.Z., Liu, Z.J., Chen, H.S.: Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 19, 1553–1563 (2013)CrossRefGoogle Scholar
  7. 7.
    Fan, W., Deng, W.: Incorporation of thiadiazole derivatives as π-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1, 152–170 (2013)CrossRefGoogle Scholar
  8. 8.
    El-Shishtawy, R.M., Asiri, A.M., Aziz, S.G., Elroby, S.A.K.: Molecular design of donor–acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J. Mol. Model. 20, 2241–2249 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Cole, J.M.: Anchoring groups for dye sensitized solar cells. ACS Appl. Mater. Interfaces 7, 3427–3455 (2015)CrossRefGoogle Scholar
  10. 10.
    Megala, M., Rajkumar, B.J.M.: Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs). J. Comput. Electron. 15, 557–568 (2016)CrossRefGoogle Scholar
  11. 11.
    Sonmezoglu, S., Akyurek, C., Akin, S.: High efficiency dye sensitized solar cells using ferrocene based electrolytes and natural photosensitizers. J. Phys. D Appl. Phys. 45, 1–7 (2012)CrossRefGoogle Scholar
  12. 12.
    Cakar, S., Ozacar, M.: The effect of iron complexes of quercetin on dye-sensitized solar cell efficiency. J. Photochem. Photobiol. A 346, 512–522 (2017)CrossRefGoogle Scholar
  13. 13.
    Megala, M., Rajkumar, B.J.M.: Molecular design of vinyl-functionalized quercetin dyes with different acceptors for dye-sensitized solar cells: theoretical investigation. J. Comput. Electron. (2018).  https://doi.org/10.1007/s10825-018-1195-8 CrossRefGoogle Scholar
  14. 14.
    Galappaththi, K., Ekanayake, P., Petra, M.I.: A rational design of high efficient and low cost dye sensitizer with exceptional absorptions: computational study of cyanidin based organic sensitizer. Sol. Energy 161, 83–89 (2018)CrossRefGoogle Scholar
  15. 15.
    Kim, S.H., Kim, H.W., Sakong, C., Namgoong, J., Park, S.W., Ko, M.J., Lee, C.H., Lee, W.I., Kim, J.P.: Effect of five-membered heteroaromatic linkers to the performance of phenothiazine-based dye-sensitized solar cells. Org. Lett. 13, 5784–5787 (2011)CrossRefGoogle Scholar
  16. 16.
    Kim, B.H., Freeman, H.S.: Structure-photovoltaic performance relationships for DSSC sensitizers having heterocyclic and benzene spacers. J. Mater. Chem. 22, 20403–20409 (2012)CrossRefGoogle Scholar
  17. 17.
    Liu, Z.: Theoretical studies of natural pigments relevant to dye-sensitized solar cells. J. Mol. Struct. (THOECHEM) 862, 44–48 (2008)CrossRefGoogle Scholar
  18. 18.
    Armas, R., Miguel, M., Ovideo, J., Sanz, J.F.: Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Phys. Chem. Chem. Phys. 14, 225–233 (2012)CrossRefGoogle Scholar
  19. 19.
    Lopez, J.B., Gonzalez, J.C., HolguinN, F., Sanchez, J.A., Mitnik, D.G.: Density functional theory (DFT) study of triphenylamine-based dyes for their use as sensitizers in molecular photovoltaics. Int. J. Mol. Sci. 13, 4418–4432 (2012)CrossRefGoogle Scholar
  20. 20.
    Abdullah, M.I., Janjua, M.R.S.A., Mahmood, A., Ali, S., Ali, M.: Quantum chemical designing of efficient sensitizers for dye sensitized solar cells. Bull. Korean Chem. Soc. 34, 2093–2098 (2013)CrossRefGoogle Scholar
  21. 21.
    Opera, C.I., Panait, P., Cimpoesu, F., Ferbinteanu, M., Girtu, M.A.: Density functional theory (DFT) study of coumarin-based dyes adsorbed on TiO2 nanoclusters—applications to dye-sensitized solar cells. Materials 6, 2372–2392 (2013)CrossRefGoogle Scholar
  22. 22.
    Aroon, W.S., Laopha, S., Chaiamornnugool, P., Tontapha, S., Saekow, S., Amornkitbamrung, V.: DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells. J. Mol. Model. 19, 1407–1415 (2013)CrossRefGoogle Scholar
  23. 23.
    Mohammadi, N., Wang, F.: First-principles study of Carbz-PAHTDDFT dye sensitizer and two Carbz-derived dyes for dye sensitized solar cells. J. Mol. Model. 20, 2177–2185 (2014)CrossRefGoogle Scholar
  24. 24.
    Huei-Tang, W., Fadlilatul, T., Santhanamoorthi, N., Jyh-Chiag, J.: Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells. J. Comput. Aided Mol. Des. 28, 565–575 (2014)CrossRefGoogle Scholar
  25. 25.
    Martsinovich, N., Troisi, A.: Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ. Sci. 4, 4473–4495 (2011)CrossRefGoogle Scholar
  26. 26.
    Scott, F., Andrew, M., Tell, T.: Predicting the UV–vis spectra of oxazine dyes. Beilstein J. Org. Chem. 7, 432–441 (2011)CrossRefGoogle Scholar
  27. 27.
    Pastore, M., Angelis, F.D.: Aggregation of organic dyes on TiO2 in dye sensitized solar cells models: an ab initio investigation. ACS Nano 4, 556–562 (2009)CrossRefGoogle Scholar
  28. 28.
    Preat, J., Michaux, C., Jacquemin, D., Perpete, E.A.: Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J. Phys. Chem. C 113, 16821–16833 (2009)CrossRefGoogle Scholar
  29. 29.
    Gorelsky, S.I.: SWizard program. University of Ottawa, Ottawa, Canada. http://www.sg-chem.net/ (2013)
  30. 30.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03. Gaussian Inc., Wallingford (2004)Google Scholar
  31. 31.
    Ruikui, C., Xichuan, Y., Haining, T., Licheng, S.: Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. J. Photochem. 189, 295–300 (2007)Google Scholar
  32. 32.
    Zhang, X.H., Wang, L.Y., Zhai, G.H., Wen, Z.Y., Zhang, Z.X.: The absorption, emission spectra as well as ground and excited states calculations of some dimethine cyanine dyes. J. Mol. Struct. THEOCHEM 906, 50–55 (2009)CrossRefGoogle Scholar
  33. 33.
    Ham, H.W., Kim, Y.S.: Theoretical study of indoline dyes for dye sensitized solar cells. Thin Solid Films 518, 6558–6563 (2010)CrossRefGoogle Scholar
  34. 34.
    Lin, L.Z., Harnly, J., Zhang, R.W., Fan, X.E., Chen, H.J.: Quantitation of the hydroxycinnamic acid derivatives and the glycosides of flavonols and flavones by UV absorbance after identification by LC-MS. J. Agric. Food Chem. 60, 544–553 (2012)CrossRefGoogle Scholar
  35. 35.
    Jungsuttiwong, S., Tarsang, R., Pansay, S., Yakhantip, T., Promarak, V., Sudyoadsuk, T., Kaewin, T., Saengsuwan, S., Namuangrak, S.: Theoretical investigation of carbazole-based D–D–π–A organic dyes for efficient dye-sensitized solar cell. World Acad. Sci. Eng. Technol. 53, 1020–1026 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsLady Doak CollegeMaduraiIndia

Personalised recommendations