Journal of Computational Electronics

, Volume 18, Issue 4, pp 1272–1279 | Cite as

A particle swarm neural networks electrothermal modeling approach applied to GaN HEMTs

  • Anwar H. JarndalEmail author
  • Sanaa Muhaureq


This paper presents a simple approach to model the self-heating effect in GaN high electron mobility transistors (HEMTs) using a particle swarm neural network and also reports the extraction procedure of the model parameters. The main advantage of the developed method is its simplicity of construction and implementation in computer-aided-design tools. The developed modeling procedure is applied to a packaged GaN HEMT and validated by DC and AC small/large-signal simulations, which showed a very good agreement with the measurements.


GaN HEMTs Large-signal modeling Neural networks modeling Particle swarm optimization 



The authors thankfully acknowledge the support from the University of Sharjah, United Arab Emirates.


  1. 1.
    Sadi, T., Kelsall, R.W., Pilgrim, N.J.: Electrothermal Monte Carlosimulation of submicrometer Si/SiGe MODFETs. IEEE Trans. Electron. Devices 54, 332–339 (2007)CrossRefGoogle Scholar
  2. 2.
    Parker, A.E., Rathmell, J.G.: Broad-band characterization of FET self-heating. IEEE Trans. Microw. Theory Tech. 53, 2424–2429 (2005)CrossRefGoogle Scholar
  3. 3.
    Jarndal, A., Kompa, G.: Large-signal model for AlGaN/GaN HEMT accurately predicts trapping and self-heating induced dispersion and intermodulation distortion. IEEE Trans. Electron Devices 54(11), 2830–2836 (2007)CrossRefGoogle Scholar
  4. 4.
    Jarndal, A., Markos, A.Z., Kompa, G.: Improved modeling of GaN HEMT on Si substrate for design of RF power amplifiers. IEEE Trans. Microw. Theory Tech. 59(3), 644–651 (2011)CrossRefGoogle Scholar
  5. 5.
    Jarndal, A., Aflaki, P., Degachi, L., Birafane, A., Kouki, A., Negra, R., Ghannouchi, F.M.: Large signal model for AlGaN/GaN HEMTs suitable for RF switching-mode power amplifiers design. Int. J. Solid State Electron. 54(7), 696–700 (2010)CrossRefGoogle Scholar
  6. 6.
    Jarndal, A., Aflaki, P., Negra, R., Kouki, A., Ghannouchi, F.M.: Large-signal modeling methodology for GaN HEMTs for RF switching-mode power amplifiers design. Int. J. RF Microw. Comput. Aided Eng. 21(1), 45–50 (2011)CrossRefGoogle Scholar
  7. 7.
    Angelov, I., Zirath, H., Rorsman, N.: A new empirical model for HEMT and MESFET devices. IEEE Trans. MTT 40(12), 2258 (1992)CrossRefGoogle Scholar
  8. 8.
    Lee, J.-W., Webb, K.: A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC. IEEE Trans. Microw. Theory Tech. 52, 2–9 (2004)CrossRefGoogle Scholar
  9. 9.
    Angelo, I., Desmaris, V., Dynefors, K., Nilsson, P.A., Rorsman, N., Zirath, H.: On the large-signal modelling of AlGaN/GaN HEMTs and SiCMESFETs. In: Gallium arsenide and other semiconductor application symposium, Paris, pp. 309–312Google Scholar
  10. 10.
    Jardel, O., De Groote, F., Reveyrand, T., Jacquet, J.-C., Charbonniaud, C., Teyssier, J.-P., Floriot, D., Quéré, R.: An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR. IEEE Trans. Microw. Theory Tech. 55(12), 2660–2669 (2007)CrossRefGoogle Scholar
  11. 11.
    King, J., Brazil, T.: Nonlinear electrothermal GaN HEMT model applied to high-efficiency power amplifier design. IEEE Trans. Microw. Theory Tech. 61(1), 444–454 (2013)CrossRefGoogle Scholar
  12. 12.
    Jarndal, A., Ghannouchi, F.M.: Improved modeling of GaN HEMTs for predicting thermal and trapping-induced-kink effects. J. Solid State Electron. 123, 19–25 (2016)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Wang, C., Sun, H., Wen, Z., Wu, Y., Xu, R., Yu, X., Ren, C., Wang, Z., Zhang, B., Chen, T., Gao, T.: A scalable large-signal multiharmonic model of AlGaN/GaN HEMTs and its application in C-Band high power amplifier MMIC. IEEE Trans. Microw. Theory Tech. 65(8), 2836–2846 (2017)CrossRefGoogle Scholar
  14. 14.
    Khandelwal, S., et al.: A robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans. Electron Devices 60(10), 3216–3222 (2013)CrossRefGoogle Scholar
  15. 15.
    Orengo, G., Colantonio, P., Gianninil, F., Pirola, M., Camarchia, V., Guerrieri, S.D.: Advanced neural network techniques for GaN-HEMT dynamic behavior characterization. In: Proceedings of the 36th European Microwave Integrated Circuits Conference, UK, Manchester, September 2006, pp. 10–13Google Scholar
  16. 16.
    Xu, J., Gunyan, D., Iwamoto, M., Cognata, A., Root, D.E.: Measurement-based non-quasi-static large-signal FET model using artificial neural networks. In: 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA (2006)Google Scholar
  17. 17.
    Xu, J., Horn, J., Iwamoto, M., Root, D.E.: Large-signal FET model with multiple time scale dynamics from nonlinearvector network analyzer data. In: IEEE MTT-S International Microwave Symposium Digest (2010)Google Scholar
  18. 18.
    Jarndal, A.: Genetic-algorithm based neural-network modeling approach applied to AlGaN/GaN Devices. Int. J. RF Microw. Comput. Aided Eng. 23, 149–156 (2013)Google Scholar
  19. 19.
    Huang, A.-D., Zhong, Z., Wu, W., Guo, Y.-X.: An ARTIfiCIAL NEURAL NETWORK-BASED ELECTROTHERMAL MODel for GaN HEMTs with dynamic trapping effects consideration. IEEE Trans. Microw. Theory Tech. 64(8), 2519–2528 (2016)CrossRefGoogle Scholar
  20. 20.
    Mohammadi, H.G., Gaillardon, P.-E., Yazdani, M., De Micheli, G.: A fast TCAD-based methodology for variation analysis of emerging nano-devices. In: IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), New York City, NY, pp. 83–88Google Scholar
  21. 21.
    Elhamadi, T., Boussouis, M., Touhami, N., Lamsalli, M.: Neuro-space mapping modeling approach for trapping and self-heating effects on GaAs and GaN devices. Int. J. RF Microw. Comput. Aided Eng. 00, e21106 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhang, Q.J., Gupta, K.C.: Neural Networks for RF and Microwave Design. Artech House, Norwood, MA (2000)Google Scholar
  23. 23.
    Kolen, J.F., Pollack, J.B.: Back propagation is sensitive to initial conditions. In: Proceedings of the 1990 Conference on Advances in Neural Information Processing Systems, pp. 860–867 (1990)Google Scholar
  24. 24.
    Gori, M., Tesi, A.: On the problem of local minima in backpropagation. IEEE Trans. Pattern Anal. Mach. Intell. 14, 1 (1992)CrossRefGoogle Scholar
  25. 25.
    Wang, X.G., Tang, Z., Tamura, H., Ishii, M., Sun, W.D.: An improved backpropagation algorithm to avoid the local minima problem. Neurocomputing 56, 455–460 (2004)CrossRefGoogle Scholar
  26. 26.
    Wang, X.G., Tang, Z., Tamura, H., Ishii, M.: A modified error function for the backpropagation algorithm. Neurocomputing 57, 477–484 (2004)CrossRefGoogle Scholar
  27. 27.
    Dai, Q., Liu, N.: Alleviating the problem of local minima in Backpropagation through competitive learning. Neurocomputing 94, 152–158 (2012)CrossRefGoogle Scholar
  28. 28.
    Locatelli, M., Schoen, F (eds.).: Global optimization: Theory, Algorithms and Applications. Society for Industrial and Applied Mathematics (2013)Google Scholar
  29. 29.
    Bui, N.T., Hasegawa, H.: Training artificial neural network using modification of differential evolution algorithm. Int. J. Mach. Learn. Comput. 5, 1 (2015)CrossRefGoogle Scholar
  30. 30.
    Panda, S., Padhy, N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 4, 1418–1427 (2008)CrossRefGoogle Scholar
  31. 31.
    Garro, B.A., Vázquez, R.A.: Designing artificial neural networks using particle swarm optimization algorithms. Comput. Intell. Neurosci. vol. 2015, Article ID 369298, p. 20 (2015)Google Scholar
  32. 32.
    Razin, M.R.G., Voosoghi, B.: Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content. J. Atmos. Sol. Terr. Phys. 149, 21–30 (2016)CrossRefGoogle Scholar
  33. 33.
    Pradeepkumar, D., Ravi, V.: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Appl. Soft Comput. 58, 35–52 (2017)CrossRefGoogle Scholar
  34. 34.
    Kenny, A., Li, X.: A study on pre-training deep neural networks using particle swarm optimisation. In: Asia-Pacific Conference on Simulated Evolution and Learning, Shenzhen, China (2017)Google Scholar
  35. 35.
    Hamada, M., Hassan, M.: Artificial neural networks and particle swarm optimization algorithms for preference prediction in multi-criteria recommender systems. Inf. J. 5, 25 (2018)Google Scholar
  36. 36.
    van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  37. 37.
    Jarndal, A., Pillai, S., Abdulqader, H., Ghannouchi, F.M.: A genetic neural network modeling of GaN HEMTs for RF power amplifiers design. In: IEEE International Conference on Microelectronics, Tunisia (2011)Google Scholar
  38. 38.
    Ozdemir, M.: Particle swarm optimization for continuous function optimization problems. Int. J. Appl. Math. Electron. Comput. 5(3), 47–52 (2017)CrossRefGoogle Scholar
  39. 39.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks Proceedings, IEEE International Conference, vol. 4, pp. 1942–1948 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations