Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1365–1371 | Cite as

Improving the wave iterative method by metaheuristic algorithms

  • Hafedh HriziEmail author
Article
  • 23 Downloads

Abstract

Among the metaheuristic algorithms used in optimization problems, we have the simulated annealing and taboo search methods which are very simple and efficient algorithms. These algorithms are historically important, they are easy to implement, and they have interesting convergence properties. In this paper, we propose to use these techniques to improve convergence in the wave iterative method in order to study planar microwave circuits. The objective is to reduce the number of iterations required to obtain the convergence point with good accuracy and minimum execution time, so that we improve the convergence to the best and optimal results.

Keywords

Metaheuristic Simulated annealing Taboo search WCIP method Convergence, accuracy, and execution time Modeling planar microwave circuit 

Notes

References

  1. 1.
    Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  2. 2.
    Talbi, E.-G.: Metaheuristics from Design to Implementation. Wiley, Hoboken (2009)zbMATHGoogle Scholar
  3. 3.
    Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lee, K.S., Geem, Z.W.: A new meta-heuristics algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)CrossRefGoogle Scholar
  5. 5.
    Kirpatrick, S., Kirpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alain, H., Eric, T.: A Tutorial on Tabou Search. Local Search in Combinatorial Optimization, pp. 121–136. Wiley, New York (1997)Google Scholar
  7. 7.
    Wane, S., Bajon, D., Baudrand, H., Gammand, P.: A new full-wave hybrid differential-integral approach for the investigation of multilayer structures including nonuniformly doped diffusions. IEEE MTT. 53(1), 200–213 (2005)CrossRefGoogle Scholar
  8. 8.
    Zairi, H., Gharsallah, A., Gharbi, A., Baudrand, H.: Analysis of planar circuits using a multigrid iterative method. IEE Proc. Antennas Propag. 153(3), 231–236 (2006)CrossRefGoogle Scholar
  9. 9.
    Raveu, N., Vuong, T.P., Terrasse, I., Piau, G.-P., Baudrand, H.: Wave concept iterative procedure applied to cylinders. IEE Proc. Microw. Antennas Propag. 151(5), 409–416 (2004)CrossRefGoogle Scholar
  10. 10.
    Ben Romdhan Hajri, J., Hrizi, H., Sboui, N.: Analysis and improvement of HF circuits based on SIW and DGS technologies using iterative method. IJAEM 50(1), 155–166 (2016)Google Scholar
  11. 11.
    Sboui, N., Hajri, J., Baudrand, H.: Analysis of a vertical interconnection access by using longitudinal wave concept iteratve process (LWCIP). PIER M 44, 21–30 (2015)CrossRefGoogle Scholar
  12. 12.
    Raveu, N., Vuong, T.-P., Terrasse, I., Piau, G.-P., Baudrand, H.: Characterization of antennas over conducting cylinders by wave concept. In: 28–31 Mars, Pise (Italie), PIERS’2004Google Scholar
  13. 13.
    Titaouine, M., Raveu, N., Baudrand, H.: Wave concept iterative procedure for inhomogeneous multi-layered circuits. In: Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference, 2009. NEWCAS-TAISA’09, pp. 1–3 (2009)Google Scholar
  14. 14.
    Li, L., Lanteri, S., Perrussel, R.: Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell’s equations. COMPEL 2(3), 1112–1138 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zugari, A., Khalladi, M., Iben Yaich, M., Raveu, N., Baudrand, H.: New approach: WCIP and FDTLM hybridization. In: Microwave Symposium (MMS), 2009 Mediterrannean, pp. 1–4 (2009)Google Scholar
  16. 16.
    Sboui, N., Hajri, J., Baudrand, H.: Analysis of a vertical interconnection access by using longitudinal wave concept iterative process (LWCIP). Prog. Electromagn. Res. 44, 21–30 (2015)CrossRefGoogle Scholar
  17. 17.
    Aroussi, S., Latrach, L., Sboui, N., Gharsallah, A., Gharbi, A., Baudrand, H.: Efficient analysis of complex FSS structure using the WCIP method. J. Electromagn. Anal. Appl. 3, 447–451 (2011)Google Scholar
  18. 18.
    Berhab, S., Abri, M., Garbi, R.: Fractional patch antenna analysis based on the iterative approach. In: The 10th Jordan International Electrical and Electronics Engineering Conference, IEEE. 978-1-5386-1836-2017Google Scholar
  19. 19.
    Hrizi, H., Latrach, L., Sboui, N., Gharsallah, A., Gharbi, A., Baudrand, H.: Improving the convergence of the wave iterative method by filtering techniques. ACES J. 26(10), 841 (2011)Google Scholar
  20. 20.
    Sboui, N., Gharsallah, A., Gharbi, A., Baudrand, H.: Analysis of double loop meander line by using iterative process. Microw. Opt. Tech. Lett. 26, 396–399 (2000)CrossRefGoogle Scholar
  21. 21.
    Latrach, L., Sboui, N., Gharsallah, A., Baudrand, H., Gharbi, A.: A design and modelling of microwave active screen using a combination of the rectangular and periodic waveguides modes. J. Electromagn. Waves Appl. 23(11–12), 1639–1648 (2009)Google Scholar
  22. 22.
    Latrach, L., Sboui, N., Gharsallah, A., Baudrand, H., Gharbi, A.: Analysis and design of planar multilayered FSS with arbitrary incidence. Appl. Comput. Electromagn. Soc. J. 23(2), 149–154 (2008)Google Scholar
  23. 23.
    Guebli, M., Hrizi, H., Hamdi, N., Sboui, N.: Reducing complexity of WCIP and improving accuracy of A_WCIP by fast adaptive algorithms. 978-1-4799-9907-1/15/$31.00 ©2015. IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Laboratory LP3ME, Faculty of Sciences in TunisUniversity of El ManarTunisTunisia
  2. 2.Higher Institute of Applied Sciences and Technology in MateurUniversity of CarthageCarthageTunisia

Personalised recommendations