Journal of Computational Electronics

, Volume 18, Issue 4, pp 1416–1422 | Cite as

A novel structure for realization of an all-optical, one-bit half-adder based on 2D photonic crystals

  • Mohamad Abdollahi
  • Fariborz ParandinEmail author


In this paper, a new structure for realizing a one-bit half-adder is proposed based on 2D photonic crystals. The proposed structure consists of 25 × 20 hexagonal lattice silicon rods in an ambient of air. The main advantages of this structure are a proper distinct space between “0” and “1” logical states of outputs, and smooth and stable outputs for a long time. These advantages are found to eliminate the error in identification of logical states (i.e., 0 and 1) at outputs. Working at a 1550-nm wavelength band (the most commonly used wavelength in optical communication known as third window), the simplicity of its structure and also integrable size has made this structure very efficacious for being realized as an all-optical logic gate.


One-bit half adder 2D photonic crystals All-optical logic gate 



  1. 1.
    Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals Physics and Practical Modeling, XIX edn. Springer, New York (2009). ISBN 978-3-642-02645-4CrossRefGoogle Scholar
  2. 2.
    Parandin, F., Malmir, M.R., Naseri, M., Zahedi, A.: Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals. Superlattices Microstruct. 113, 737–744 (2018)CrossRefGoogle Scholar
  3. 3.
    Hussein, H.M.E., Ali, T.A., Rafat, N.H.: A review on the techniques for building all-optical photonic crystal logic gates. Opt. Laser Technol. 106, 385–397 (2018)CrossRefGoogle Scholar
  4. 4.
    Rani, P., Kalra, Y., Sinha, R.K.: Design of all optical logic gates in photonic crystal waveguides. Photonic Sens. 2(2), 173–179 (2012)CrossRefGoogle Scholar
  5. 5.
    Parandin, F., Malmir, M.R., Naseri, M.: All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices Microstruct. 109, 437–441 (2017)CrossRefGoogle Scholar
  6. 6.
    Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027–1103 (2013)CrossRefGoogle Scholar
  7. 7.
    Moniem, T.A., El-Din, E.S.: Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals. Opt. Commun. 402(1), 36–40 (2017)CrossRefGoogle Scholar
  8. 8.
    Mohebzadeh-Bahabady, A., Olyaee, S.: All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron. 12(4), 191–195 (2018)CrossRefGoogle Scholar
  9. 9.
    Hussein, H.M.E., Ali, T.A., Rafat, N.H.: New designs of a complete set of photonic crystals logic gates. Opt. Commun. 411, 175–181 (2018)CrossRefGoogle Scholar
  10. 10.
    Olyaee, S., Seifouri, M., Mohebzadeh-Bahabady, A., et al.: Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt. Quantum Electron. 50, 385 (2018). CrossRefGoogle Scholar
  11. 11.
    Moniem, T.A.: All optical 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 68(8), 735–741 (2016)CrossRefGoogle Scholar
  12. 12.
    Parandin, F., Karkhanehchi, M.M.: Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct. 101, 253–260 (2017)CrossRefGoogle Scholar
  13. 13.
    Parandin, F., Karkhanehchi, M.M., Naseri, M., Zahedi, A.: Design of a high bitrate optical decoder based on photonic crystals. J. Comput. Electron. 17, 830–836 (2018)CrossRefGoogle Scholar
  14. 14.
    Lin, G., Chen, X., Zhuang, D.: 1 × 4 optical multiplexer based on self-collimation effect of 2D photonic crystal. Optik 125, 4322–4326 (2015)CrossRefGoogle Scholar
  15. 15.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124, 5964–5967 (2013)CrossRefGoogle Scholar
  16. 16.
    Moniem, T.A.: All-optical S-R flip flop using 2-D photonic crystal. Opt. Quantum Electron. 10, 10 (2015). CrossRefGoogle Scholar
  17. 17.
    Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33, 159–165 (2017)CrossRefGoogle Scholar
  18. 18.
    Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commuun. 35(2), 245 (2018)CrossRefGoogle Scholar
  19. 19.
    Sonth, M.V., Soma, S., Gowre, S.C., Biradar, N.: Modeling and optimization of half adder in two dimensional photonic crystals. J. Electron. Mater. 47(7), 4136–4139 (2018)CrossRefGoogle Scholar
  20. 20.
    Joannopoulos, J.D., Johnson, G.S., Winn, N.J., Meade, R.D.: Photonic Crystals: Modeling the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)zbMATHGoogle Scholar
  21. 21.
    Johnson, S., Joannopoulos, J.: Block iterative frequency-domain methods for Maxwell’s equations in plane wave basis. Opt. Express 8(3), 173–190 (2001)CrossRefGoogle Scholar
  22. 22.
    Ahmadi, M., Abrishamian, M.S.: Raman gap soliton in one-dimensional photonic crystal: a FDTD analysis. AEU Int. J. Electron. Commun. 65(10), 767–771 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  2. 2.Department of Electrical Engineering, Eslamabad-E-Gharb BranchIslamic Azad UniversityEslamabad-E-GharbIran

Personalised recommendations