Journal of Computational Electronics

, Volume 18, Issue 4, pp 1222–1228 | Cite as

Boosting the performance of an ultrascaled carbon nanotube junctionless tunnel field-effect transistor using an ungated region: NEGF simulation

  • Khalil TamersitEmail author


This paper focuses on the role of the longitudinal spacing between the auxiliary gate and control gate in boosting the performance of an ultrascaled junctionless carbon nanotube tunnel field-effect transistor (JL CNT-TFET). The investigation is based on self-consistent quantum simulations in the nonequilibrium Green’s function formalism in the ballistic limit. It is found that dilation of the ungated longitudinal space between the gates causes a significant improvement in the leakage current, ambipolar behavior, subthreshold swing, on/off-current ratio, power–delay product, and intrinsic delay. In addition, a substantial enhancement in the swing factor and current ratio is also recorded for the JL CNT-TFET with coaxial control gate length below 10 nm. The results indicate that adjusting the spacing between the auxiliary gate and control gate is a simple, efficient, and promising approach to achieve ultrascaled JL CNT-TFETs with very high performance.


Junctionless Carbon nanotube tunnel field-effect transistor (CNT-TFET) Nonequilibrium Green’s function (NEGF) Tunneling Spacing Switching characteristics Sub-10-nm technology 



  1. 1.
    Desai, S.B., et al.: MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). CrossRefGoogle Scholar
  2. 2.
    Perucchini, M., et al.: Physical insights into the operation of a 1-nm gate length transistor based on MoS2 with metallic carbon nanotube gate. Appl. Phys. Lett. 113(18), 183507 (2018). CrossRefGoogle Scholar
  3. 3.
    Marin, E.G., et al.: First-principles simulations of FETs based on two-dimensional InSe. IEEE Electron Device Lett. 39(4), 626–629 (2018). CrossRefGoogle Scholar
  4. 4.
    Marin, E.G., et al.: First principles investigation of tunnel FETs based on nanoribbons from topological two-dimensional materials. Nanoscale 9(48), 19390–19397 (2017). CrossRefGoogle Scholar
  5. 5.
    Pizzi, G., et al.: Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun (2016). CrossRefGoogle Scholar
  6. 6.
    Ionescu, A.M., et al.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). CrossRefGoogle Scholar
  7. 7.
    Seabaugh, A.C., et al.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010). CrossRefGoogle Scholar
  8. 8.
    Sarkar, D., et al.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91–95 (2015). CrossRefGoogle Scholar
  9. 9.
    Esseni, D., et al.: A review of selected topics in physics based modeling for tunnel field-effect transistors. Semicond. Sci. Technol. 32(8), 083005 (2017). CrossRefGoogle Scholar
  10. 10.
    Strangio, S., et al.: Digital and analog TFET circuits: design and benchmark. Solid-State Electron. 146, 50–65 (2018). CrossRefGoogle Scholar
  11. 11.
    Lee, C.-W., et al.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. (2009). CrossRefGoogle Scholar
  12. 12.
    Colinge, J.-P., et al.: Nanowire transistors without junctions. Nat. Nanotech. 5(3), 225 (2010). CrossRefGoogle Scholar
  13. 13.
    Lee, C.-W., et al.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010). CrossRefGoogle Scholar
  14. 14.
    Gnani, E., et al.: Theory of the Junctionless Nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011). CrossRefGoogle Scholar
  15. 15.
    Colinge, J.P., et al.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65–66, 33–37 (2011). CrossRefGoogle Scholar
  16. 16.
    Ghosh, B., et al.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013). CrossRefGoogle Scholar
  17. 17.
    Tahaei, S.H., et al.: A computational study of a carbon nanotube junctionless tunneling field-effect transistor (CNT-JLTFET) based on the charge plasma concept. Superlattices Microstruct. 125, 168–176 (2019). CrossRefGoogle Scholar
  18. 18.
    Raad, B.R., et al.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017). CrossRefGoogle Scholar
  19. 19.
    Asthana, P.K., et al.: High-speed and low-power ultradeep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron Devices 61(2), 479–480 (2014). CrossRefGoogle Scholar
  20. 20.
    Raad, B.R., et al.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016). CrossRefGoogle Scholar
  21. 21.
    Avouris, P., et al.: Carbon-based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007). CrossRefGoogle Scholar
  22. 22.
    Cress, C.D., et al.: Nanoscale transistors—just around the gate? Science 341(6142), 140–141 (2013). CrossRefGoogle Scholar
  23. 23.
    Guo, J., et al.: Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2), 257–276 (2004). CrossRefGoogle Scholar
  24. 24.
    Koswatta, S.O., et al.: Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87(25), 253107-1–253107-3 (2005). CrossRefGoogle Scholar
  25. 25.
    Koswatta, S.O., et al.: Computational study of carbon nanotube p–i–n tunnel FETs. IEDM Tech. Dig. (2005). CrossRefGoogle Scholar
  26. 26.
    Koswatta, S.O., et al.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007). CrossRefGoogle Scholar
  27. 27.
    Anantram, M.P., et al.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008). CrossRefGoogle Scholar
  28. 28.
    Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000). CrossRefGoogle Scholar
  29. 29.
    Zhao, P., et al.: Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9(2), 684–688 (2009). CrossRefGoogle Scholar
  30. 30.
    Tamersit, K., et al.: Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016). CrossRefGoogle Scholar
  31. 31.
    Tamersit, K., et al.: A computationally efficient hybrid approach based on artificial neural networks and the wavelet transform for quantum simulations of graphene nanoribbon FETs. J. Comput. Electron. (2019). CrossRefGoogle Scholar
  32. 32.
    Tamersit, K., et al.: A novel graphene field-effect transistor for radiation sensing application with improved sensitivity: proposal and analysis. Nucl. Instrum. Methods Phys. Res. Sect. A 901, 32–39 (2018). CrossRefGoogle Scholar
  33. 33.
    Tamersit, K., et al.: Carbon nanotube field-effect transistor with vacuum gate dielectric for label-free detection of DNA molecules: a computational investigation. IEEE Sens. J. (2019). CrossRefGoogle Scholar
  34. 34.
    Tamersit, K.: Quantum simulation of a junctionless carbon nanotube field-effect transistor with binary metal alloy gate electrode. Superlattices Microstruct. 128, 252–259 (2019). CrossRefGoogle Scholar
  35. 35.
    Tamersit, K.: Performance assessment of a new radiation dosimeter based on carbon nanotube field-effect transistor: a quantum simulation study. IEEE Sens. J. 19(9), 3314–3321 (2019). CrossRefGoogle Scholar
  36. 36.
    Yousefi, R., et al.: Numerical study of lightly doped drain and source carbon nanotube field effect transistors. IEEE Trans. Electron Devices 57(4), 765–771 (2010). CrossRefGoogle Scholar
  37. 37.
    Pourian, P., et al.: Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: numerical study. Superlattices Microstruct. 93, 92–100 (2016). CrossRefGoogle Scholar
  38. 38.
    Franklin, A.D., et al.: Toward surround gates on vertical single-walled carbon nanotube devices. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27(2), 821 (2009). CrossRefGoogle Scholar
  39. 39.
    Franklin, A.D., et al.: Carbon nanotube complementary wrap-gate transistors. Nano Lett. 13(6), 2490–2495 (2013). CrossRefGoogle Scholar
  40. 40.
    Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). CrossRefGoogle Scholar
  41. 41.
    Tamersit, K.: An ultra-sensitive gas nanosensor based on asymmetric dual-gate graphene nanoribbon field-effect transistor: proposal and investigation. J. Comput. Electron. (2019). CrossRefGoogle Scholar
  42. 42.
    Tamersit, K.: Computational study of short-channel effects in double-gate junctionless graphene nanoribbon field-effect transistors. J. Comput. Electron. (2019). CrossRefGoogle Scholar
  43. 43.
    Divya Bharathi, N., et al.: Performance analysis of a substrate-engineered monolayer MoS2 field-effect transistor. J. Comput. Electron. 18(1), 146–154 (2018). CrossRefGoogle Scholar
  44. 44.
    Tamersit, K., et al.: Boosting the performance of a nanoscale graphene nanoribbon field-effect transistor using graded gate engineering. J. Comput. Electron. 17(3), 1276–1284 (2018). CrossRefGoogle Scholar
  45. 45.
    Kotti, M., et al.: On the dynamic rounding-off in analogue and RF optimal circuit sizing. Int. J. Electron. 101(4), 452–468 (2013). CrossRefGoogle Scholar
  46. 46.
    Bendib, T., et al.: Electrical performance optimization of nanoscale double-gate MOSFETs using multiobjective genetic algorithms. IEEE Trans. Electron Devices 58(11), 3743–3750 (2011). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and TelecommunicationsUniversité 8 Mai 1945 GuelmaGuelmaAlgeria

Personalised recommendations