Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1139–1151 | Cite as

Different contributions to spin polarization in the Auger neutralization of He+ ions at the Ni (111) surface under the influence of screening length

  • A. MudhaferEmail author
Article
  • 29 Downloads

Abstract

Theoretical aspects are presented for the spin polarization of electrons excited during the impact of spin-polarized He+ ions on a Ni (111) surface. The screening length effects due to the screened Coulomb (Yukawa) potential on spin polarization are explored within the framework of spin-dependent Auger neutralization process. First-order perturbation theory is used to calculate the Auger rates. The incident He+ ions and the metal electrons are spin-polarized so that we will analyze the spin of empty bound state of He+ ions by two possibilities. One is that the spin of empty bound state is parallel to the majority spin in the metal electrons, and the other is that the spin of empty bound state is parallel to the minority spin in the metal electrons. Results are discussed depending on the spin-dependent matrix elements and the neutralization probability of He+ ions with different contributions.

Keywords

Spin polarization Screening length Auger neutralization Ni (111) surface Auger electrons 

Notes

Acknowledgement

I appreciate the time and effort that editor and the reviewers have dedicated to providing a valuable feedback on paper. I thank Prof. Dr. T. A. Selman, solid-state physics from the Department of Physicists, College of Science, University of Basra, Iraq, for comments that greatly improved the manuscript and Asst. Lech. Zahraa S. Khaleel, Information System from Osmania University, India, for her assistance with Language corrections.

References

  1. 1.
    German, E.D.: Theoretical models of X–H bonds breaking (X=C, O, and H) over metal surfaces: Used for simulation of catalytic methane steam reforming. Russ. J. Electrochem. 53, 1222 (2017)Google Scholar
  2. 2.
    Gong, S.-J., Cai, J., Yao, Q.-F., Tong, W.-Y., Wan, X., Duan, C.-G., Chu, J.H.: Orbital control of Rashba spin orbit coupling in noble metal surfaces. Appl. Phys. 119, 125310 (2016)Google Scholar
  3. 3.
    Teng, L.-H., Li-Jun, M., Wang, X.: Effect of quasi-fermi level on the degree of electron spin polarization in GaAs. Chin. Phys. Lett. 33, 6 (2016)Google Scholar
  4. 4.
    Obreshkov, B., Thumm, U.: H formation in collisions of hydrogen atoms with Al (100) surfaces. Phys. Rev. A 87, 022903 (2013)Google Scholar
  5. 5.
    Gradhand, M., Czerner, M., Fedorov, D.V., Zahn, P., Yavorsky, B.Y., Szunyogh, L., Mertig, I.: Spin polarization on Fermi surfaces of metals by the KKR method. Phys. Rev. B 80, 224413 (2009)Google Scholar
  6. 6.
    Arnold, C.S., Papps, D.P.: Gd (0001): a semi-infinite three-dimensional Heisenberg ferromagnet with ordinary surface transition. Phys. Rev. Lett. 85, 5202 (2000)Google Scholar
  7. 7.
    Kurahashi, M., Suzuki, T., Ju, X., Yamauchi, Y.: A spin-polarized metastable-atom deexcitation spectroscopy (SPMDS) study on surface Curie temperature of fe films on Cu(100). Jpn. J. Appl. Phys. 42, 4698 (2003)Google Scholar
  8. 8.
    Bode, M., Heide, M., von Bergmann, K., Ferriani, P., Heinze, S., Bihlmayer, G., Kubetzka, A., Pietzsch, O., Blügel, S., Wiesendanger, R.: Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190 (2007)Google Scholar
  9. 9.
    Gruyters, M., Bernhard, T., Winter, H.: Evidence for noncollinearity between surface and bulk magnetization in ultrathin Co films. Phys. Rev. Lett. 94, 227205 (2005)Google Scholar
  10. 10.
    Gao, C.L., Schlickum, U., Wulfhekel, W., Kirschner, J.: Mapping the surface spin structure of large unit cells: reconstructed Mn films on Fe (001). Phys. Rev. Lett. 98, 107203 (2007)Google Scholar
  11. 11.
    Cazalilla, M.A., Lorente, N., Díez Muiño, R., Gauyacq, J.-P., Teillet-Billy, D., Echenique, P.M.: Theory of Auger neutralization and deexcitation of slow ions at metal surfaces. Phys. Rev. B 58, 13991 (1998)Google Scholar
  12. 12.
    Hagstrum, H.D.: Theory of Auger ejection of electrons from metals by ions. Phys. Rev. 96, 336 (1954)Google Scholar
  13. 13.
    Coleman, P.: Introduction to Many-Body Physics. Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
  14. 14.
    Monreal, R.C.: Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces. Prog. Surf. Sci. 89, 80 (2014)Google Scholar
  15. 15.
    Alducin, M., Arnau, A., Echenique, P.M.: Auger capture rates for a slow ion close to a metal surface. Nucl. Instrum. Methods B 67, 157 (1992)Google Scholar
  16. 16.
    Lorente, N., Monreal, R., Alducin, M.: Local theory of Auger neutralization for slow and compact ions interacting with metal surfaces. Phys. Rev. A 49, 4716 (1994)Google Scholar
  17. 17.
    Goebl, D., Valdés, D., Abad, E., Monreal, R.C., Primetzhofer, D., Bauer, P.: Band structure effects in Auger neutralization of He ions at metal surfaces. Phys. Rev. B 84, 165428 (2011)Google Scholar
  18. 18.
    Wethekam, S., Valdes, D., Monreal, R.C., Winter, H.: Face-dependent Auger neutralization and ground-state energy shift for He in front of Al surfaces. Phys. Rev. B 78, 075423 (2008)Google Scholar
  19. 19.
    Valdes, D., Blanco, J.M., Esaulov, V.A., Monreal, R.C.: Azimuth-dependent Auger neutralization of He+ on Ag (111) and (110) surfaces. Phys. Rev. B 75, 165404 (2007)Google Scholar
  20. 20.
    Valdes, D., Blanco, J.M., Esaulov, V.A., Monreal, R.C.: Role of d electrons in auger neutralization at metal surfaces. PRL 97, 047601 (2006)Google Scholar
  21. 21.
    Bandurin, Y., Esaulov, V.A., Guillemot, L., Monreal, R.C.: Surface miller index dependence of auger neutralization of ions on surfaces. PRL 92, 017601 (2004)Google Scholar
  22. 22.
    Wethekam, S., Busch, M., Monreal, R.C., Winter, H.: Effect of spin polarization of Ni (110) surface on Auger neutralization for grazing scattering of He+ ions. Nucl. Instrum Methods B 267, 571 (2009)Google Scholar
  23. 23.
    Alducin, M.: Spin dependence in the neutralization of He+ ions in metals: An analysis of different contributions. Nucl. Instrum. Methods B 232, 8 (2005)Google Scholar
  24. 24.
    Alducin, M., Juaristi, J.I., Muino, R.D., Rosler, M., Echenique, P.M.: Spin-dependent electron emission from metals in the neutralization of He+ ions. Phys. Rev. A 72, 024901 (2005)Google Scholar
  25. 25.
    Alducin, M., García de Abajo, F.J., Echenique, P.M.: Auger intra-atomic transitions in grazing atom-surface collisions. Phys. Rev. 49, 14589 (1994)Google Scholar
  26. 26.
    Alducin, M.: Auger deexcitation in a helium atom induced by a metal surface. Phys. Rev. A 53, 4222 (1996)Google Scholar
  27. 27.
    Achilli, S., Brivio, G.P., Fratesi, G., Trioni, M.I.: Spin polarized metastable helium de-excitation processes on metal surfaces. J. Phys. Chem. A 115, 8498 (2011)Google Scholar
  28. 28.
    Bonini, N., Brivio, G.P., Trioni, M.I.: Theory of metastable deexcitation spectroscopy on simple metals. Phys. Rev. B 68, 035408 (2003)Google Scholar
  29. 29.
    Onelion, M., Hart, M.W., Dunning, F.B., Walters, G.K.: Spin-polarized metastable-atom deexcitation spectroscopy: a new probe of surface magnetism. Phys. Rev. Lett. 52, 380 (1984)Google Scholar
  30. 30.
    Hammond, M.S., Dunning, F.B., Walters, G.K., Prinz, G.A.: Spin dependence in He(23S) metastable-atom deexcitation at magnetized Fe(110) and O/Fe(110) surfaces. Phys. Rev. B 45, 3674 (1992)Google Scholar
  31. 31.
    Salvietti, M., Moroni, R., Ferro, P., Canepa, M., Mattera, L.: Simple model to calculate surface magnetization from spin-polarized metastable deexcitation spectroscopy: Fe/Ag(100). Phys. Rev. B 54, 14758 (1996)Google Scholar
  32. 32.
    Kurahashi, M., Suzuki, T., Ju, X., Yamauchi, Y.: Spin-polarized metastable-atom deexcitation spectroscopy of Fe/Cu(100) surfaces with perpendicular magnetization. Phys. Rev. B 67, 024407 (2003)Google Scholar
  33. 33.
    Kurahashi, M., Suzuki, T., Ju, X., Yamauchi, Y.: Spin dependence in the survival probability of metastable He (23S) atoms during the scattering from ferromagnetic surfaces. Phys. Rev. Lett. 91, 267203 (2003)Google Scholar
  34. 34.
    Moroni, R., Oliveri, E., Mattera, L.: Penning de-excitation of spin-polarized metastable He atoms on magnetic surfaces: Mg on Fe. Nucl. Instr. Methods Phys. Res. B 203, 29 (2003)Google Scholar
  35. 35.
    Hart, M.W., Hammond, M.S., Dunning, F.B., Walters, G.K.: Spin-polarized metastable-atom deexcitation spectroscopy: a new probe of the dynamics of metastable-atom–surface interactions. Phys. Rev. B 39, 5488 (1989)Google Scholar
  36. 36.
    Bixler, D.L., Lancaster, J.C., Kontur, F.J., Nordlander, P., Walters, G.K., Dunning, F.B.: Spin-dependent studies of the dynamics of He+ ion neutralization at a Au(100) surface. Phys. Rev. B 60, 9082 (1999)Google Scholar
  37. 37.
    Lancaster, J.C., Kontur, F.J., Walters, G.K., Dunning, F.B.: Dynamics of He+ ion neutralization at clean metal surfaces: energy- and spin-resolved studies. Phys. Rev. B 67, 115413 (2003)Google Scholar
  38. 38.
    Lavagnino, L., Moroni, R., Bisio, F., Terreni, S., Mattera, L., Canepa, M.: A spin polarized He metastable beam investigation of the adsorption of l-cysteine on magnetic surfaces. Nucl. Instr. Methods Phys. Res. B. 269, 932–935 (2011)Google Scholar
  39. 39.
    Alducin, M., Rosler, M.: Spin-dependent electron excitation and emission in the neutralization of He+ ions at paramagnetic surfaces. Nucl. Instr. Methods B 256, 423–428 (2007)Google Scholar
  40. 40.
    Penn, D.R., Apell, S.P.: Theory of spin-polarized metastable-atom-deexcitation spectroscopy: Ni–He. Phys. Rev. B 41, 3303 (1990)Google Scholar
  41. 41.
    Salmi, L.A.: Theory of spin polarization in the Metastable-He–metal interaction. Phys. Rev. B 46, 4180 (1992)Google Scholar
  42. 42.
    Alducin, M., Muino, R.D., Juaristi, J.I., Arnau, A.: Spin-polarized electron excitation during the neutralization of He+ ions in metals. J. Electron spectrosc. Relat. Phenom. 137–140, 401 (2004)Google Scholar
  43. 43.
    Alducin, M., Muino, R.D., Juaristi, J.I.: Spin-dependent screening and Auger neutralization of He+ ions in metals. Phys. Rev. A 70, 012901 (2004)Google Scholar
  44. 44.
    Alducin, M., Muino, R.D., Juaristi, J.I.: Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas. Nucl. Instr. Methods B 230, 431–437 (2005)Google Scholar
  45. 45.
    Juaristi, J.I., Alducin, M., Muino, R.D., Rosler, M.: Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas. Nucl. Instr. Methods B 232, 73–78 (2005)Google Scholar
  46. 46.
    Vincent, R., Juaristi, J.I., Nagy, I.: Z1 oscillations in the spin polarization of electrons excited by slow ions in a spin-polarized electron gas. Nucl. Instr. Methods B 258, 79–82 (2007)Google Scholar
  47. 47.
    Juaristi, J.I., Alducin, M.: Spin dependent screening and Auger neutralization of singly-charged noble gas ions in metals. Nucl. Instrum. Methods B 256, 24 (2007)Google Scholar
  48. 48.
    Miskovic, Z.L., Janev, R.K.: Dynamical effects in kinetic energy distributions of Auger electrons from ion(atom)–surface interactions. Surf. Sci. 166, 480–494 (1986)Google Scholar
  49. 49.
    Snowdon, K.J., Hentschke, R., Narman, A., Heiland, W.: Auger and resonant neutralization of low energy ions near metal surfaces. Surf. Sci. 173, 581 (1986)Google Scholar
  50. 50.
    Janev, R.K., Nedeljkovic, N.N.: Interaction of atomic particles with solid surfaces. V. Auger de-excitation of metastable atoms. J. Phys. B 14, 2995 (1981)Google Scholar
  51. 51.
    Janev, R.K., Nedeljkovic, N.N.: Interaction of atomic particles with solid surfaces. VI. Auger neutralization of positive ions. J. Phys. B 18, 915 (1985)Google Scholar
  52. 52.
    Modinos, A., Easa, S.I.: On the interpretation of ion neutralization spectra at metal surfaces. Surf. Sci. 185, 569–586 (1987)Google Scholar
  53. 53.
    Selman, T.A.: Auger’s Neutralization and De-excitation Processes in Ion (Atom)-Surface Scattering. Ph.D. Thesis. University of Basrah (2000)Google Scholar
  54. 54.
    Probst, F.M.: Energy distributions of electrons ejected from tungsten by He+. Phys. Rev. 129, 7 (1963)Google Scholar
  55. 55.
    Zimuny, R., Miskovic, Z.L., Nedeljkovic, N.N., Nedeljkovic, L.J.D.: Interplay of resonant and Auger processes in proton neutralization after grazing surface scattering. Surf. Sci. 255, 135–156 (1991)Google Scholar
  56. 56.
    Hagstrum, H.D.: Ion-neutralization spectroscopy of solids and solid surfaces. Phys. Rev. 150, 495 (1966)Google Scholar
  57. 57.
    Hagstrum, H.D., Becker, G.E.: Ion-neutralization spectroscopy of copper and nickel. Phys. Rev. 159, 572 (1967)Google Scholar
  58. 58.
    Appelbaum, J.A., Hamann, D.R.: Theoretical studies of ion neutralization at a solid surface. Phys. Rev. B 12, 5590 (1975)Google Scholar
  59. 59.
    Hood, E., Bozso, F., Metiu, H.: A simple phenomenological model for the interpretation of ion neutralization spectra. Surf. Sci. 161, 491–512 (1985)Google Scholar
  60. 60.
    Walecka, J.D.: Introduction to Modern Physics: Theoretical Foundation. World Scientific Publishing Co. Pte. Ltd., Singapore (2008)zbMATHGoogle Scholar
  61. 61.
    Kane, E.O.: Electron scattering by pair production in silicon. Phys. Rev. 159, 624 (1967)Google Scholar
  62. 62.
    Hagstrum, H.D., Becker, G.E.: Ion-neutralization spectroscopy of copper and nickel. Phys. Rev. Lett. 16, 230 (1966)Google Scholar
  63. 63.
    Himpsel, F.J., Ortega, J.E., Mankey, G.J., Willis, R.F.: Magnetic nanostructures. Adv. Phys. 47, 511 (1998)Google Scholar
  64. 64.
    Himpsel, F.J., Altmann, K.N.: Electronic states of magnetic materials. In: Schattke, W., Hove, M.V. (eds.), Solid State Photoemission and Related Methods. Wiley, Weinheim (2003)Google Scholar
  65. 65.
    Moruzzi, V.L., Janak, J.F., Williams, A.R.: Calculated Electronic Properties of Metals. Pergamon Press, New York (1978)Google Scholar
  66. 66.
    Schneider, C.M., Kirschner, J. (eds): Magnetism at surfaces and in ultrathin films. In: Handbook of Surface Science, vol. 2, p. 668. Elsevier Science B. V. (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical and Petrochemical Technical Engineering Department, Engineering Technical College BasrahSouthern Technical UniversityBasraIraq

Personalised recommendations