Advertisement

FLANN-SM analysis of a \(\varOmega\) unit cell

  • Sambhudutta NandaEmail author
  • Prasanna Kumar Sahu
  • Rabindra Kishore Mishra
Article
  • 19 Downloads

Abstract

A new technique for the calculation of the permeability of an Omega unit cell is presented. In the proposed method, neuro-space mapping is used to transform the Omega unit cell structure to a split-ring resonator (SRR) structure using a functional link artificial neural network (FLANN), taking the dimensions of the Omega unit cell as the inputs and giving the dimensions of the equivalent SRR as the output. The permeability of the Omega-shaped SRR is then calculated using a formula derived by the Lorentz method with these mapped dimensions. The functional linked artificial neural network-space mapping technique is then used to find an SRR equivalent to the Omega unit cell. In the SM part, the FLANN is used as the coarse model and the CST engine as the fine model. The permeability of the Omega unit cell and the SRR match well over the range of 3.5 GHz to 6 GHz when using a learning rate of 0.002 and a tolerance value < 0.05.

Keywords

FLANN LHM Metamaterial \(\varOmega\) unit cell Space mapping SRR 

Notes

Acknowledgements

The authors would like to acknowledge the college authority of the National Institute of Technology, Rourkela, India for various types of financial support during this research work.

References

  1. 1.
    Panda, G., Das, D.P.: Functional link artificial neural network for active control of nonlinear noise processes. In: International Workshop on Acoustic Echo and Noise Control, vol. 2003 (2003)Google Scholar
  2. 2.
    Mili, F., Hamdi, M.: A hybrid evolutionary functional link artificial neural network for data mining and classification. In: Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), 2012 6th International Conference on. IEEE (2012)Google Scholar
  3. 3.
    Behera, A.K., et al.: Improving software reliability prediction accuracy using CRO-based FLANN. In: Innovations in Computer Science and Engineering. Springer, Singapore, pp. 213–220 (2019)Google Scholar
  4. 4.
    Das, D., Matolak, D.W., Das, S.: Spectrum occupancy prediction based on functional link artificial neural network (FLANN) in ISM band. Neural Comput. Appl. 29(12), 1363–1376 (2018)CrossRefGoogle Scholar
  5. 5.
    Koziel, S., Cheng, Q., Bandler, J.: Space mapping. IEEE Microw. Mag. 9(6), 105–122 (2008).  https://doi.org/10.1109/MMM.2008.929554 CrossRefGoogle Scholar
  6. 6.
    Leszczynska, N., Couckuyt, I., Dhaene, T., Mrozowski, M.: Low-cost surrogate models for microwave filters. IEEE Microw. Wirel. Compon. Lett. 26(12), 969–971 (2016).  https://doi.org/10.1109/LMWC.2016.2623248 CrossRefGoogle Scholar
  7. 7.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)CrossRefGoogle Scholar
  8. 8.
    Engheta, N., Ziolkowski, R.W.: Metamaterials: Physics and Engineering Explorations. Wiley, London (2006)CrossRefGoogle Scholar
  9. 9.
    Karamanos, T.D., Dimitriadis, A.I., Kantartzis, N.V.: Effective parameter extraction of SRR structures by means of first-principles homogenization techniques. Metamaterials (2012)Google Scholar
  10. 10.
    Zhou, H., et al.: An improved method of determining permittivity and permeability by S parameters. In: PIERS Proceedings, Beijing, China, pp. 768–773 (2009)Google Scholar
  11. 11.
    Zhu, L., Zhang, Q., Liu, K., Ma, Y., Peng, B., Yan, S.: A novel dynamic neuro-space mapping approach for nonlinear microwave device modeling. IEEE Microw. Wirel. Compon. Lett. 26(2), 131–133 (2016).  https://doi.org/10.1109/LMWC.2016.2516761 CrossRefGoogle Scholar
  12. 12.
    Wan, W., Fukui, R.: Efficient planar caging test using space mapping. IEEE Trans. Autom. Sci. Eng. 15(1), 278–289 (2018)CrossRefGoogle Scholar
  13. 13.
    Zhu, J., Bandler, J.W., Nikolova, N.K., Koziel, S.: Antenna optimization through space mapping. IEEE Trans. Antennas Propag. 55(3), 651–658 (2007)CrossRefGoogle Scholar
  14. 14.
    Koziel, S., Bekasiewicz, A.: Implicit space mapping for variable-fidelity EM-driven design of compact circuits. IEEE Microw. Wirel. Compon. Lett. 28(4), 275–277 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhang, X., et al.: Design of a K-band two-layer microstrip interdigital filter exploiting aggressive space mapping. J. Electromagn. Waves Appl. 32(17), 2281–2291 (2018)CrossRefGoogle Scholar
  16. 16.
    Bakr, M.H., et al.: A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 46(12), 2412–2425 (1998)CrossRefGoogle Scholar
  17. 17.
    Pao, Y.-H., Phillips, S.M., Sobajic, D.J.: Neural-net computing and the intelligent control of systems. Int. J. Control 56(2), 263–289 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNIT RourkelaRourkelaIndia
  2. 2.Department of Electronic ScienceBerhampur UniversityBerhampurIndia

Personalised recommendations