Advertisement

Compact modeling of GIDL-assisted erase in 3-D NAND Flash strings

  • Gerardo MalavenaEmail author
  • Aurelio Mannara
  • Andrea L. Lacaita
  • Alessandro Sottocornola Spinelli
  • Christian Monzio Compagnoni
Article
  • 21 Downloads

Abstract

This paper presents a physics-based compact model able to describe the time dynamics of the erase operation in three-dimensional NAND Flash strings exploiting gate-induced drain leakage at the selector to increase the string potential. The model accurately reproduces all the main phases of the erase operation and allows to calculate the threshold voltage transient arising from hole injection into and electron emission from the gate stack of the memory cells, accounting for the correct cylindrical geometry of the string. Thanks to its simple structure, the model is suitable for parametric analyses aiming at optimizing the string structure and the operating waveforms from the standpoint of the erase performance.

Keywords

NAND Flash memories Gate-induced drain leakage Erase Compact modeling Semiconductor device modeling 

Notes

Acknowledgements

The authors would like to thank G. Nicosia from Politecnico di Milano and A. Goda, C. Caillat, D. Resnati, E. Camerlenghi, P. Tessariol, and G. M. Paolucci from Micron Technology Inc. for discussions and support.

References

  1. 1.
    Compagnoni, C.M., Goda, A., Spinelli, A.S., Feeley, P., Lacaita, A.L., Visconti, A.: Reviewing the evolution of the NAND Flash technology. Proc. IEEE 105, 1609–1633 (2017).  https://doi.org/10.1109/JPROC.2017.2665781 CrossRefGoogle Scholar
  2. 2.
    Parat, K., Dennison, C.: A floating gate based \(3\)-D NAND technology with CMOS under array. In: IEDM Technical Digest, pp. 48–51 (2015).  https://doi.org/10.1109/IEDM.2015.7409618
  3. 3.
    Caillat, C., Beaman, K., Bicksler, A., Camozzi, E., Ghilardi, T., Huang, G., Liu, H., Liu, Y., Mao, D., Mujumdar, S., Righetti, N., Ulrich, M., Venkatasubramanian, C., Yang, X., Goda, A., Gowda, S., Mebrahtu, H., Sanda, H., Yuwen, Y., Koval, R.: \(3\)D NAND GIDL-assisted body biasing for erase enabling CMOS under array (CUA) architecture. Proc. IMW (2017).  https://doi.org/10.1109/IMW.2017.7939067
  4. 4.
    Tanaka, H., Kido, M., Yahashi, K., Oomura, M., Katsumata, R., Kito, M., Fukuzumi, Y., Sato, M., Nagata, Y., Matsuoka, Y., Iwata, Y., Aochi, H., Nitayama, A.: Bit cost scalable technology with punch and plug process for ultra high density Flash memory. In: VLSI Symposium Tech. Dig., pp. 14–15 (2007).  https://doi.org/10.1109/VLSIT.2007.4339708
  5. 5.
    Fukuzumi, Y., Katsumata, R., Kito, M., Kido, M., Sato, M., Tanaka, H., Nagata, Y., Matsuoka, Y., Iwata, Y., Aochi, H., Nitayama, A.: Optimal integration and characteristics of vertical array devices for ultra-high density, bit-cost scalable Flash memory. In: IEDM Technical Digest, pp. 449–452 (2007).  https://doi.org/10.1109/IEDM.2007.4418970
  6. 6.
    Malavena, G., Lacaita, A.L., Spinelli, A.S., Compagnoni, C.M.: Investigation and compact modeling of the time dynamics of the GIDL-assisted increase of the string potential in \(3\)-D NAND Flash arrays. IEEE Trans. Electron Devices 65, 2804–2811 (2018).  https://doi.org/10.1109/TED.2018.2831902 CrossRefGoogle Scholar
  7. 7.
    Jang, J., Kim, H.S., Cho, W., Cho, H., Kim, J., Shim, S.I., Jang, Y., Jeong, J.H., Son, B.K., Kim, D.W., Kim, K., Shim, J.J., Lim, J.S., Kim, K.H., Yi, S.Y., Lim, J.Y., Chung, D., Moon, H.C., Hwang, S., Lee, J.W., Son, Y.H., Chung, U.I., Lee, W.S.: Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND Flash memory. In: VLSI Symposia Technology Digest, pp. 192–193 (2009)Google Scholar
  8. 8.
    Capogreco, E., Degraeve, R., Lisoni, J.G., Luong, K.V., Arreghini, A., Toledano-Luque, M., Hikavyy, A., Numata, T., De Meyer, K., Van den bosch, G., Van Houdt, J.: Integration and electrical evaluation of epitaxially grown Si and SiGe channels for vertical NAND memory applications. In: Proc. IMW, pp. 1–4 (2015).  https://doi.org/10.1109/IMW.2015.7150291
  9. 9.
    Subirats, A., Arreghini, A., Capogreco, E., Delhougne, R., Tan, C.L., Hikavyy, A., Breuil, L., Degraeve, R., Putcha, V., Van den bosch, G., Linten, D., Furnemont, A.: Experimental and theoretical verification of channel conductivity degradation due to grain boundaries and defects in 3D NAND. In: IEDM Technical Digest, pp. 517–520 (2017).  https://doi.org/10.1109/IEDM.2017.8268433
  10. 10.
    Amoroso, S.M., Compagnoni, C.M., Mauri, A., Maconi, A., Spinelli, A.S., Lacaita, A.L.: Semi-analytical model for the transient operation of gate-all-around charge-trap memories. IEEE Trans. Electron Devices 58, 3116–3123 (2011).  https://doi.org/10.1109/TED.2011.2159010 CrossRefGoogle Scholar
  11. 11.
    Manzini, S., Volonté, F.: Charge transport and trapping in silicon nitride-silicon dioxide dielectric double layers. J. Appl. Phys. 58, 4300–4306 (1985)CrossRefGoogle Scholar
  12. 12.
    Paolucci, G.M., Spinelli, A.S., Compagnoni, C.M., Tessariol, P.: A semi-analytical model for macaroni MOSFETs with application to vertical Flash memories. IEEE Trans. Electron Devices 63, 1871–1876 (2016).  https://doi.org/10.1109/TED.2016.2543605 CrossRefGoogle Scholar
  13. 13.
    Compagnoni, C.M., Mauri, A., Amoroso, S.M., Maconi, A., Spinelli, A.S.: Physical modeling for programming of TANOS memories in the Fowler-Nordheim regime. IEEE Trans. Electron Devices 56, 2008–2015 (2009).  https://doi.org/10.1109/TED.2009.2026315 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly

Personalised recommendations