A model for nonvolatile p-channel metal–ferroelectric–metal–insulator–semiconductor field-effect transistors (MFMIS FETs)

  • Jing SunEmail author
  • Yanping Li
  • Lei Cao


An improved theoretical model for metal–ferroelectric–metal–insulator–semiconductor field-effect transistors (MFMIS FETs) is presented. The basic theory describing the ferroelectric behavior is replaced by the dipole switching theory (DST) because of its deeper physical meaning and its ability to account for the history-dependent electric field effect of the ferroelectric. Using the combination of DST and the theory of series capacitances, the capacitance–voltage (CV) characteristic of the MFMIS structure is simulated, while the combination of the DST with Pao and Sah’s double integral enables the simulation of the drain current–gate voltage (IDVGS) and drain current–drain voltage (IDVDS) characteristics. The good agreement between the simulation and experimental results confirms the validity of this model. The effects of the area ratio AF/AM on the CV, IDVGS, and IDVDS characteristics are further provided by the model. The simulation results indicate that the applied voltage and ID ON/OFF ratio decrease while the memory window widens as the area-ratio increases. This work is expected to help direct the design and fabrication of MFMIS-based devices.


Model Metal–ferroelectric–metal–insulator–semiconductor (MFMIS) Field-effect transistor (FET) Area ratio 



This work was supported by the National Natural Science Foundation of China (51502087), Scientific Research Fund of Hunan Provincial Education Department (15B056), and Start-Up Fund for Doctorate of Hunan Institute of Engineering.


  1. 1.
    Scott, J.F.: Application of modern ferroelectric. Science 315, 954–959 (2007)CrossRefGoogle Scholar
  2. 2.
    Han, S.T., Zhou, Y., Roy, V.A.L.: Towards the development of flexible non-volatile memories. Adv. Mater. 25, 5425–5449 (2013)CrossRefGoogle Scholar
  3. 3.
    Tu, L., Wang, X., Wang, J., Meng, X., Chu, J.: Ferroelectric negative capacitance field effect transistor. Adv. Electron. Mater. 4, 1800231-1–1800231-17 (2018)Google Scholar
  4. 4.
    Pahwa, G., Dutta, T., Agarwal, A., Chauhan, Y.S.: Physical insights on negative capacitance transistor in nonhysteresis and hysteresis regimes: MFMIS versus MFIS structures. IEEE Trans. Electron Devices 65, 867–873 (2018)CrossRefGoogle Scholar
  5. 5.
    Miller, S.L., McWhorter, P.J.: Physics of the ferroelectric nonvolatile memory field transistor. J. Appl. Phys. 72, 5999–6010 (1992)CrossRefGoogle Scholar
  6. 6.
    Lue, H.T., Wu, C.J., Tseng, T.Y.: Device modeling of ferroelectric memory field-effect transistor (FeMFET). IEEE Trans. Electron Devices 49, 1790–1798 (2002)CrossRefGoogle Scholar
  7. 7.
    Jiang, C., Liang, R., Wang, J., Xu, J.: Analytical drain current model for long-channel gate-all-around negative capacitance transistors with a metal–ferroelectric–insulator–semiconductor structure. Jpn. J. Appl. Phys. 55(1–7), 024201 (2016)CrossRefGoogle Scholar
  8. 8.
    Sun, J., Zheng, X.J.: Modeling of MFIS-FETs for the application of ferroelectric random access memory. IEEE Trans. Electron Devices 58, 3559–3565 (2011)CrossRefGoogle Scholar
  9. 9.
    Tokumitsu, E., Okamoto, K., Ishiwara, H.: Low voltage operation of nonvolatile metal-ferroelectric-metal-insulator-semiconductor (MFMIS)-field-effect-transistor (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn. J. Appl. Phys. 40, 2917–2922 (2001)CrossRefGoogle Scholar
  10. 10.
    Arimoto, Y., Ishiwara, H.: Current status of ferroelectric random-access memory. MRS Bull. 29, 823–828 (2004)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Lian, Y., Samudra, G.S.: Quantitative analysis and prediction of experimental observations on quasi-static hysteretic metal-ferroelectric-metal-insulator-semiconductor FET and its dynamic behaviour based on Landau theory. Semicond. Sci. Technol. 30, 045011-1-8 (2015)Google Scholar
  12. 12.
    Yang, F., Tang, M.H., Zhou, Y.C., Zheng, X.J., Liu, F., Tang, J.X., Zhang, J.J., Zhang, J.: A model for the polarization hysteresis loops of the perovskite-type ferroelectric thin films. Appl. Phys. Lett. 91, 142902-1-3 (2007)Google Scholar
  13. 13.
    Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, New Jersey (2007)Google Scholar
  14. 14.
    Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge Univ. Press, Cambridge (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and InformationHunan Institute of EngineeringXiangtanPeople’s Republic of China

Personalised recommendations