Advertisement

A regularized adaptive spatial resolution technique for fast and accurate analysis of metal–dielectric crossed gratings

  • Seyed Amir Hossein NekueeEmail author
  • Ehsan Faghihifar
Article
  • 13 Downloads

Abstract

The application of regularized jump points has been proposed [Khavasi and Mehrany in Opt Commun 284(13):3211–3215, 6] as an adaptive spatial resolution (ASR) technique to improve the convergence of the Fourier modal method (FMM) in the analysis of one-dimensional periodic structures. We extend this approach to obtain the optical response of metal–dielectric crossed gratings, two-dimensional periodic structures with a high-contrast permittivity distribution. A metallic grid and a slab of split-ring resonators are analyzed using the proposed ASR technique, and the results compared with those obtained using the conventional ASR technique and FMM. The results show that, by adequately choosing the discontinuity points of the dielectric function in the new coordinates, the convergence speed and accuracy of the proposed ASR technique are further increased compared with the conventional ASR technique.

Keywords

Metal–dielectric grating Discontinuity point Fourier modal method Adaptive spatial resolution 

Notes

References

  1. 1.
    Correia, D., Jin, J.M.: 3D-FDTD-PML analysis of left-handed metamaterials. Microw. Opt. Technol. Lett. 40(3), 201–205 (2004)CrossRefGoogle Scholar
  2. 2.
    Granet, G.: Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J. Opt. Soc. Am. A 16(10), 2510–2516 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Granet, G., Chandezon, J., Plumey, J.P., Raniriharinosy, K.: Reformulation of the coordinate transformation method through the concept of adaptive spatial resolution. Application to trapezoidal gratings. J. Opt. Soc. Am. A 18(9), 2102–2108 (2001)CrossRefGoogle Scholar
  4. 4.
    Granet, G., Jean-Pierre, P.: Parametric formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. A Pure Appl. Opt. 4(5), S145 (2002)CrossRefGoogle Scholar
  5. 5.
    Granet, G., Li, L.: Convincingly converged results for highly conducting periodically perforated thin films with square symmetry. J. Opt. A Pure Appl. Opt. 8(6), 546 (2006)CrossRefGoogle Scholar
  6. 6.
    Khavasi, A., Mehrany, K.: Regularization of jump points in applying the adaptive spatial resolution technique. Opt. Commun. 284(13), 3211–3215 (2011)CrossRefGoogle Scholar
  7. 7.
    Kirby, E.I., Hamm, J.M., Tsakmakidis, K.L., Hess, O.: FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides. J. Opt. A Pure Appl. Opt. 11(11), 114027 (2009)CrossRefGoogle Scholar
  8. 8.
    Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)CrossRefGoogle Scholar
  9. 9.
    Li, L.: Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 13(5), 1024–1035 (1996)CrossRefGoogle Scholar
  10. 10.
    Li, L.: New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A 14(10), 2758–2767 (1997)CrossRefGoogle Scholar
  11. 11.
    Li, L.W., Li, Y.N., Yeo, T.S., Mosig, J.R., Martin, O.J.F.: A broadband and high-gain metamaterial microstrip antenna. Appl. Phys. Lett. 96(16), 164101 (2010)CrossRefGoogle Scholar
  12. 12.
    Nekuee, S.A.H., Akbari, M., Khavasi, A.: Guided mode extraction in monolayer colloidal crystals based on the phase variation of reflection and transmission coefficients. Opt. Commun. 364, 44–49 (2016)CrossRefGoogle Scholar
  13. 13.
    Nekuee, S.A.H., Akbari, M., Mehrany, K.: A novel method for band structure analysis of photonic crystal slabs. IEEE Photonics J. 3(6), 1111–1122 (2011)CrossRefGoogle Scholar
  14. 14.
    Perruisseau-Carrier, J., Skrivervik, A.K.: Composite right/left-handed transmission line metamaterial phase shifters (MPS) in MMIC technology. IEEE Trans. Microw. Theory Tech. 54(4), 1582–1589 (2006)CrossRefGoogle Scholar
  15. 15.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)CrossRefGoogle Scholar
  16. 16.
    Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71(3), 036617 (2005)CrossRefGoogle Scholar
  17. 17.
    Vallius, T., Honkanen, M.: Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles. Opt. Express 10(1), 24–34 (2002)CrossRefGoogle Scholar
  18. 18.
    Weiss, T., Granet, G., Gippius, N.A., Tikhodeev, S.G., Giessen, H.: Matched coordinates and adaptive spatial resolution in the Fourier modal method. Opt. Express 17(10), 8051–8061 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhang, X., Liu, Z.: Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 435–441 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Communications TechnologyICT Research InstituteTehranIran
  2. 2.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations