Advertisement

The maximum rectification ratio of pyrene-based molecular devices: a systematic study

  • M. Farid Jamali
  • H. Rahimpour SoleimaniEmail author
  • M. Bagheri Tagani
Article
  • 33 Downloads

Abstract

We apply the NEGF + DFT technique to study the effect of anchoring groups on the electronic transport properties of a single pyrene molecule attached to two Au electrodes via three different anchoring groups (namely NO2, NH2 and CN). More specifically, we investigate the effect of asymmetric electrode coupling together with B and N doping on rectification ratio of a pyrene-based molecular device. The results indicate that the rectification ratio can be tuned by selecting configurations of maximum difference in the coupling parameters in the two sides of the gold electrodes, and its magnitude depends on the strength of the electronic coupling of the pyrene molecule to the gold electrodes. In addition, we observe that doping the molecule with B and N atoms decreases the coupling parameters by creating a resonant peak close to the Fermi level.

Keywords

Molecular junction Pyrene Rectification ratio Non-equilibrium Green’s function method Doping 

Notes

Acknowledgements

This work was supported by Iran National Science Foundation (INSF) (94011986).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)Google Scholar
  2. 2.
    Tsutsui, M., Teramae, Y., Kurokawa, S., Sakai, A.: High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89(16), 163111 (2006)Google Scholar
  3. 3.
    Néel, N., Kröger, J., Limot, L., Berndt, R.: Conductance of oriented C60 molecules. Nano Lett. 8(5), 1291–1295 (2008)Google Scholar
  4. 4.
    Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)Google Scholar
  5. 5.
    Chiechi, R.C., Weiss, E.A., Dickey, M.D., Whitesides, G.M.: Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 120(1), 148–150 (2008)Google Scholar
  6. 6.
    Temirov, R., Lassise, A., Anders, F.B., Tautz, F.S.: Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19(6), 065401 (2008)Google Scholar
  7. 7.
    An, Y.P., Yang, Z., Ratner, M.A.: High-efficiency switching effect in porphyrin-ethyne-benzene conjugates. J. Chem. Phys. 135(4), 044706 (2011)Google Scholar
  8. 8.
    Fan, Z.Q., Zhang, Z.H., Qiu, M., Tang, G.P.: Rectifying performance and reversible conductance switching of single-polyaniline devices. Phys. Lett. A 375(37), 3314–3318 (2011)Google Scholar
  9. 9.
    Min, Y., Yao, K.L., Fu, H.H., Liu, Z.L., Li, Q.: First-principles study of strong rectification and negative differential resistance induced by charge distribution in single molecule. J. Chem. Phys. 132(21), 214703 (2010)Google Scholar
  10. 10.
    Fan, Z.Q., Chen, K.Q.: Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries. Appl. Phys. Lett. 96(5), 053509 (2010)Google Scholar
  11. 11.
    Saffarzadeh, A., Farghadan, R.: A spin-filter device based on armchair graphene nanoribbons. Appl. Phys. Lett. 98(2), 023106 (2011)Google Scholar
  12. 12.
    Zhu, L., Yao, K.L., Liu, Z.L.: Molecular spin valve and spin filter composed of single-molecule magnets. Appl. Phys. Lett. 96(8), 082115 (2010)Google Scholar
  13. 13.
    Ren, Y., Chen, K.Q., Wan, Q., Zou, B.S., Zhang, Y.: Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices. Appl. Phys. Lett. 94(18), 183506 (2009)Google Scholar
  14. 14.
    An, Y., Yang, Z.: Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects. Appl. Phys. Lett. 99(19), 192102 (2011)Google Scholar
  15. 15.
    Long, M.Q., Chen, K.Q., Wang, L., Qing, W., Zou, B.S., Shuai, Z.: Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett. 92(24), 215 (2008)Google Scholar
  16. 16.
    Pan, H., Zhang, Y.W., Shenoy, V.B., Gao, H.: Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J. Phys. Chem. C 115(24), 12224–12231 (2011)Google Scholar
  17. 17.
    Müller, K.H.: Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73(4), 045403 (2006)Google Scholar
  18. 18.
    Hu, Y., Zhu, Y., Gao, H., Guo, H.: Conductance of an ensemble of molecular wires: a statistical analysis. Phys. Rev. Lett. 95(15), 156803 (2005)Google Scholar
  19. 19.
    Basch, H., Cohen, R., Ratner, M.A.: Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett. 5(9), 1668–1675 (2005)Google Scholar
  20. 20.
    Ke, S.H., Baranger, H.U., Yang, W.: Molecular conductance: chemical trends of anchoring groups. J. Am. Chem. Soc. 126(48), 15897–15904 (2004)Google Scholar
  21. 21.
    Dell’Angela, M., Kladnik, G., Cossaro, A., Verdini, A., Kamenetska, M., Tamblyn, I., Venkataraman, L.: Relating energy level alignment and amine-linked single molecule junction conductance. Nano Lett. 10(7), 2470–2474 (2010)Google Scholar
  22. 22.
    Darancet, P., Widawsky, J.R., Choi, H.J., Venkataraman, L., Neaton, J.B.: Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12(12), 6250–6254 (2012)Google Scholar
  23. 23.
    Wickenburg, S., Lu, J., Lischner, J., Tsai, H.Z., Omrani, A.A., Riss, A., Wong, D.: Tuning charge and correlation effects for a single molecule on a graphene device. Nat. Commun. 7, 13553 (2016)Google Scholar
  24. 24.
    Kamenetska, M., Koentopp, M., Whalley, A.C., Park, Y.S., Steigerwald, M.L., Nuckolls, C., Venkataraman, L.: Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102(12), 126803 (2009)Google Scholar
  25. 25.
    Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)Google Scholar
  26. 26.
    Li, Z., Smeu, M., Ratner, M.A., Borguet, E.: Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 117(29), 14890–14898 (2013)Google Scholar
  27. 27.
    Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)Google Scholar
  28. 28.
    Li, C., Pobelov, I., Wandlowski, T., Bagrets, A., Arnold, A., Evers, F.: Charge transport in single Au| alkanedithiol| Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130(1), 318–326 (2008)Google Scholar
  29. 29.
    Yasuda, S., Yoshida, S., Sasaki, J., Okutsu, Y., Nakamura, T., Taninaka, A., Shigekawa, H.: Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy. J. Am. Chem. Soc. 128(24), 7746–7747 (2006)Google Scholar
  30. 30.
    Zhang, Z., Yoshida, N., Imae, T., Xue, Q., Bai, M., Jiang, J., Liu, Z.: A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: a structural investigation by surface plasmon resonance, ultraviolet–visible, and infrared spectroscopies. J. Colloid Interface Sci. 243(2), 382–387 (2001)Google Scholar
  31. 31.
    Heera, T.R., Cindrella, L.: Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. J. Mol. Model. 16(3), 523–533 (2010)Google Scholar
  32. 32.
    Cheng, Z.L., Skouta, R., Vazquez, H., Widawsky, J.R., Schneebeli, S., Chen, W., Venkataraman, L.: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6(6), 353–357 (2011)Google Scholar
  33. 33.
    Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D., Berndt, R.: Atomic-scale engineering of electrodes for single-molecule contacts. Nat. Nanotechnol. 6(1), 23–27 (2011)Google Scholar
  34. 34.
    Frei, M., Aradhya, S.V., Koentopp, M., Hybertsen, M.S., Venkataraman, L.: Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11(4), 1518–1523 (2011)Google Scholar
  35. 35.
    Hong, W., Manrique, D.Z., Moreno-Garcia, P., Gulcur, M., Mishchenko, A., Lambert, C.J., Wandlowski, T.: Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134(4), 2292–2304 (2012)Google Scholar
  36. 36.
    Lörtscher, E., Cho, C.J., Mayor, M., Tschudy, M., Rettner, C., Riel, H.: Influence of the anchor group on charge transport through single-molecule junctions. ChemPhysChem 12(9), 1677–1682 (2011)Google Scholar
  37. 37.
    Zotti, L.A., Kirchner, T., Cuevas, J.C., Pauly, F., Huhn, T., Scheer, E., Erbe, A.: Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6(14), 1529–1535 (2010)Google Scholar
  38. 38.
    Koepf, M., Koenigsmann, C., Ding, W., Batra, A., Negre, C.F., Venkataraman, L., Crabtree, R.H.: Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale 8(36), 16357–16362 (2016)Google Scholar
  39. 39.
    Ulrich, J., Esrail, D., Pontius, W., Venkataraman, L., Millar, D., Doerrer, L.H.: Variability of conductance in molecular junctions. J. Phys. Chem. B 110(6), 2462–2466 (2006)Google Scholar
  40. 40.
    Jamali, M.F., Tagani, M.B., Soleimani, H.R.: Improvement of the thermoelectric efficiency of Pyrene-based molecular junction with doping engineering. Chin. Phys. B 26(12), 123101 (2017)Google Scholar
  41. 41.
    Xue, Y., Ratner, M.A.: End group effect on electrical transport through individual molecules: a microscopic study. Phys. Rev. B 69(8), 085403 (2004)Google Scholar
  42. 42.
    Kim, Y., Hellmuth, T.J., Burkle, M., Pauly, F., Scheer, E.: Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano 5(5), 4104–4111 (2011)Google Scholar
  43. 43.
    Kushmerick, J.G., Whitaker, C.M., Pollack, S.K., Schull, T.L., Shashidhar, R.: Tuning current rectification across molecular junctions. Nanotechnology 15(7), S489 (2004)Google Scholar
  44. 44.
    Van Dyck, C., Ratner, M.A.: Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett. 15(3), 1577–1584 (2015)Google Scholar
  45. 45.
    Bala, S., Aithal, R.K., Derosa, P., Janes, D., Kuila, D.: Molecular rectifying diodes based on an aluminum/4′-hydroxy-4-biphenyl carboxylic acid/p+-silicon junction. J. Phys. Chem. C 114(48), 20877–20884 (2010)Google Scholar
  46. 46.
    Metzger, R.M.: Unimolecular rectifiers: present status. Chem. Phys. 326(1), 176–187 (2006)Google Scholar
  47. 47.
    Nijhuis, C.A., Reus, W.F., Whitesides, G.M.: Molecular rectification in metal–SAM–metal oxide–metal junctions. J. Am. Chem. Soc. 131(49), 17814–17827 (2009)Google Scholar
  48. 48.
    Nijhuis, C.A., Reus, W.F., Barber, J.R., Dickey, M.D., Whitesides, G.M.: Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett. 10(9), 3611–3619 (2010)Google Scholar
  49. 49.
    Souto, M., Yuan, L., Morales, D.C., Jiang, L., Ratera, I., Nijhuis, C.A., Veciana, J.: Tuning the rectification ratio by changing the electronic nature (open-shell and closed-shell) in donor–acceptor self-assembled monolayers. J. Am. Chem. Soc. 139(12), 4262–4265 (2017)Google Scholar
  50. 50.
    Ryu, T., Lansac, Y., Jang, Y.H.: Shuttlecock-shaped molecular rectifier: asymmetric electron transport coupled with controlled molecular motion. Nano Lett. 17(7), 4061–4066 (2017)Google Scholar
  51. 51.
    Metzger, R.M.: Unimolecular electronics. Chem. Rev. 115(11), 5056–5115 (2015)Google Scholar
  52. 52.
    Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18(37), 4364–4396 (2008)Google Scholar
  53. 53.
    Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103(9), 3803–3834 (2003)Google Scholar
  54. 54.
    Stadler, R., Geskin, V., Cornil, J.: A theoretical view of unimolecular rectification. J. Phys. Condens. Matter 20(37), 374105 (2008)Google Scholar
  55. 55.
    Zahedi, E., Pangh, A.: Current–voltage characteristics through dithienylcyclopentene: a NEGF-DFT study. Phys. E 61, 1–8 (2014)Google Scholar
  56. 56.
    Stefani, D., Gutiérrez-Cerón, C.A., Aravena, D., Labra-Muñoz, J., Suarez, C., Liu, S., Dulic, D.: Charge transport through a single molecule of trans-1-bis-Diazofluorene [60] fullerene. Chem. Mater. 29(17), 7305–7312 (2017)Google Scholar
  57. 57.
    Sebera, J., Kolivoska, V., Valášek, M., Gasior, J., Sokolová, R., Meszaros, G., Hromadová, M.: Tuning charge transport properties of asymmetric molecular junctions. J. Phys. Chem. C 121(23), 12885–12894 (2017)Google Scholar
  58. 58.
    Wang, L.H., Guo, Y., Tian, C.F., Song, X.P., Ding, B.J.: Negative differential resistance and rectifying behaviors in atomic molecular device with different anchoring groups. Phys. E 43(1), 524–528 (2010)Google Scholar
  59. 59.
    Zhang, H., Zeng, J., Chen, K.Q.: Rectifying and negative differential resistance behaviors induced by asymmetric electrode coupling in Pyrene-based molecular device. Phys. E 44(7), 1631–1635 (2012)Google Scholar
  60. 60.
    Fan, Z.Q., Zhang, Z.H., Qiu, M., Deng, X.Q., Tang, G.P.: The site effects of B or N doping on IV characteristics of a single Pyrene molecular device. Appl. Phys. Lett. 101(7), 073104 (2012)Google Scholar
  61. 61.
    Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)Google Scholar
  62. 62.
    Zhang, Z., Yang, Z., Yuan, J., Zhang, H., Ming, Q., Deng, X.: Electronic transport properties of pheny1 based molecular devices. Solid State Commun. 149(1), 60–63 (2009)Google Scholar
  63. 63.
    Liu, J., Kind, M., Schüpbach, B., Käfer, D., Winkler, S., Zhang, W., Wöll, C.: Triptycene-terminated thiolate and selenolate monolayers on Au (111). Beilstein J. Nanotechnol. 8, 892 (2017)Google Scholar
  64. 64.
    Lud, S.Q., Neppl, S., Richter, G., Bruno, P., Gruen, D.M., Jordan, R., Garrido, J.A.: Controlling surface functionality through generation of thiol groups in a self-assembled monolayer. Langmuir 26(20), 15895–15900 (2010)Google Scholar
  65. 65.
    Rangel, T., Ferretti, A., Olevano, V., Rignanese, G.M.: Many-body correlations and coupling in benzene-dithiol junctions. Phys. Rev. B 95(11), 115137 (2017)Google Scholar
  66. 66.
    Kristensen, I.S., Mowbray, D.J., Thygesen, K.S., Jacobsen, K.W.: Comparative study of anchoring groups for molecular electronics: structure and conductance of Au–S–Au and Au–NH2–Au junctions. J. Phys. Condens. Matter 20(37), 374101 (2008)Google Scholar
  67. 67.
    Ford, M.J., Hoft, R.C., McDonagh, A.M., Cortie, M.B.: Rectification in donor–acceptor molecular junctions. J. Phys. Condens. Matter 20(37), 374106 (2008)Google Scholar
  68. 68.
    Mishchenko, A., Zotti, L.A., Vonlanthen, D., Bürkle, M., Pauly, F., Cuevas, J.C., Wandlowski, T.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)Google Scholar
  69. 69.
    Nigam, S., Sahoo, S.K., Sarkar, P., Majumder, C.: Chair like NiAu6: clusters assemblies and CO oxidation study by ab initio methods. Chem. Phys. Lett. 584, 108–112 (2013)Google Scholar
  70. 70.
    Ganji, M.D.: Azopyridine molecular conductor: a superior device for molecular switch technology. Electron. Mater. Lett. 8(6), 565–570 (2012)Google Scholar
  71. 71.
    Quek, S.Y., Venkataraman, L., Choi, H.J., Louie, S.G., Hybertsen, M.S., Neaton, J.B.: Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 7(11), 3477–3482 (2007)Google Scholar
  72. 72.
    Paulsson, M., Frederiksen, T., Brandbyge, M.: Inelastic transport through molecules: comparing first-principles calculations to experiments. Nano Lett. 6(2), 258–262 (2006)Google Scholar
  73. 73.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)Google Scholar
  74. 74.
    Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)Google Scholar
  75. 75.
    Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31(10), 6207 (1985)Google Scholar
  76. 76.
    Fan, Z.Q., Zhang, Z.H., Deng, X.Q., Tang, G.P., Yang, C.H., Sun, L., Zhu, H.L.: Effect of electrode twisting on electronic transport properties of atomic carbon wires. Carbon 98, 179–186 (2016)Google Scholar
  77. 77.
    Huisman, E.H., Guédon, C.M., van Wees, B.J., van der Molen, S.J.: Interpretation of transition voltage spectroscopy. Nano Lett. 9(11), 3909–3913 (2009)Google Scholar
  78. 78.
    Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48(28), 5178–5181 (2009)Google Scholar
  79. 79.
    Podstawka, E., Ozaki, Y., Proniewicz, L.M.: Part III: surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl. Spectrosc. 59(12), 1516–1526 (2005)Google Scholar
  80. 80.
    Chen, F., Li, X., Hihath, J., Huang, Z., Tao, N.: Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128(49), 15874–15881 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Nanophysics Laboratory (CNL), Department of PhysicsUniversity of GuilanRashtIran

Personalised recommendations