Advertisement

Near-field phase modulation using a semicircular radially gradient metasurface for beam steering of an RF antenna

  • Kranti Kumar KatareEmail author
  • Animesh Biswas
  • M. Jaleel Akhtar
Article
  • 53 Downloads

Abstract

A semicircular radially gradient metasurface (SCRGM) structure is proposed to modulate the phase of the electric field of a radiofrequency (RF) antenna in the near field. The metasurface partially covers the antenna aperture, thus facilitating tilting of the beam in the elevation plane (E-plane). In the proposed configuration, the phase modulation capability of the radially gradient metasurface is utilized in combination with a semicircular superstrate made of low-dielectric-constant material, placed at a height of \(0.17 \lambda _0\) above and parallel to the antenna aperture. Firstly, the broadside beam of the patch antenna is tilted away from the normal direction by the phase modulation of the electric field over the aperture of the antenna. Beam steering in the E-plane is achieved by in-plane translation of the SCRGM in front of a stationary primary feed antenna, further modulating the phase. The aperture area and weight of the proposed SCRGM are \(3.77\lambda _0^2\) and 22.0 g, respectively. The compact antenna structure with integrated SCRGM offers \(-45^{\circ }\) to \(+45^{\circ }\) beam steering in the E-plane with reasonably constant gain in the range of 10–11 dBi (with scan loss better than 1 dB). The strategy of partially covering the antenna aperture and further translating the radially gradient metasurface enables a considerably wide beam scanning range using a compact configuration.

Keywords

Metasurface Beam steering Phase modulation 

References

  1. 1.
    Cui, T.J., Liu, S., Zhang, L.: Information metamaterials and metasurfaces. J. Mater. Chem. C 5(15), 3644 (2017)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Mei, S., Huang, K., Qiu, C.W.: Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4(6), 818 (2016)CrossRefGoogle Scholar
  3. 3.
    Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333 (2011)CrossRefGoogle Scholar
  4. 4.
    Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014)CrossRefGoogle Scholar
  5. 5.
    Smart, A.G.: Phase-shifting surfaces bend the rules of ray optics. Phys. Today 64, 11 (2011)Google Scholar
  6. 6.
    Chaimool, S., Rakluea, C., Akkaraekthalin, P.: Mu-near-zero metasurface for microstrip-fed slot antennas. Appl. Phys. A 112(3), 669 (2013)CrossRefGoogle Scholar
  7. 7.
    Sarkhel, A., Bhadra Chaudhuri, S.R.: Enhanced-gain printed slot antenna using an electric metasurface superstrate. Appl. Phys. A 122(10), 934 (2016)CrossRefGoogle Scholar
  8. 8.
    Guo, W., Wang, G., Li, H., Zhuang, Y., Shuai, C.: Ultra-thin reflecting polarization beam splitter under spherical waves’ illumination by using single-layered anisotropic metasurface. Appl. Phys. A 123(1), 103 (2017)CrossRefGoogle Scholar
  9. 9.
    Huang, Y., Yang, L., Li, J., Wang, Y., Wen, G.: Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna. Appl. Phys. Lett. 109(5), 054101 (2016)CrossRefGoogle Scholar
  10. 10.
    Long, M., Jiang, W., Gong, S.: Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface. IEEE Antennas Wirel. Propag. Lett. 16, 2534 (2017)CrossRefGoogle Scholar
  11. 11.
    Zhu, H.L., Liu, X.H., Cheung, S.W., Yuk, T.I.: Frequency-reconfigurable antenna using metasurface. IEEE Trans. Antennas Propag. 62(1), 80 (2014)CrossRefGoogle Scholar
  12. 12.
    Burokur, S.N., Daniel, J.P., Ratajczak, P., de Lustrac, A.: Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl. Phys. Lett. 97(6), 064101 (2010)CrossRefGoogle Scholar
  13. 13.
    Hum, S.V., Perruisseau-Carrier, J.: Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans. Antennas Propag. 62(1), 183 (2014)CrossRefGoogle Scholar
  14. 14.
    Ma, H.F., Chen, X., Xu, H.S., Yang, X.M., Jiang, W.X., Cui, T.J.: Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials. Appl. Phys. Lett. 95(9), 094107 (2009)CrossRefGoogle Scholar
  15. 15.
    Ma, H.F., Chen, X., Yang, X.M., Jiang, W.X., Cui, T.J.: Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials. J. Appl. Phys. 107(1), 014902 (2010)CrossRefGoogle Scholar
  16. 16.
    Wei, Z., Cao, Y., Su, X., Gong, Z., Long, Y., Li, H.: Highly efficient beam steering with a transparent metasurface. Opt. Express 21(9), 10739 (2013)CrossRefGoogle Scholar
  17. 17.
    Ratni, B., de Lustrac, A., Piau, G.P., Burokur, S.N.: Modeling and design of metasurfaces for beam scanning. Appl. Phys. A 123, 50 (2017)CrossRefGoogle Scholar
  18. 18.
    Ji, L.Y., Guo, Y.J., Qin, P.Y., Gong, S.X., Mittra, R.: A reconfigurable partially reflective surface (PRS) antenna for beam steering. IEEE Trans. Antennas Propag. 63(6), 2387 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhu, H.L., Cheung, S.W., Yuk, T.I.: Mechanically pattern reconfigurable antenna using metasurface. IET Microw. Antennas Propag. 9(12), 1331 (2015)CrossRefGoogle Scholar
  20. 20.
    Griffiths, H.D., Khan, M.R.: Antenna beam steering technique using dielectric wedges. IEE PROC-H 136(2), 126 (1989)Google Scholar
  21. 21.
    Gagnon, N., Petosa, A.: Using rotatable planar phase shifting surfaces to steer a high-gain beam. IEEE Trans. Antennas Propag. 61(6), 3086 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Afzal, M.U., Esselle, K.P.: Steering the beam of medium-to-high gain antennas using near-field phase transformation. IEEE Trans. Antennas Propag. 65(4), 1680 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Katare, K.K., Biswas, A., Akhtar, M.J.: Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination. J. Appl. Phys. 122(23), 234901 (2017)CrossRefGoogle Scholar
  24. 24.
    Attia, H., Siddiqui, O., Ramahi, O.: Beam tilting of single microstrip antenna using high permittivity superstrate. Microw. Opt. Technol. Lett. 55(7), 1657 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIIT KanpurKanpurIndia

Personalised recommendations