Advertisement

Fully depleted three-gate silicon MESFET on SOI material: analytical modeling and simulation

  • Hossein Mohammadi
  • Huda Abdullah
  • Dee Chang Fu
  • P. Susthitha Menon
  • Iraj Sadegh Amiri
Article

Abstract

An innovative type of device for high-density and high-speed applications, three-gate (TG) SOI-MESFET, is proposed. The new design is expected to exhibit excellent immunity against short channel effects (SCEs) and leakage current. To investigate the superior subthreshold characteristics of the suggested device, a physically based analytical model for channel potential and threshold voltage is developed. The model is based on the analytical solution of the three-dimensional Poisson equation with suitable boundary conditions. Using the model, the design features for the important device parameters and bias condition are examined and compared with classical SOI-MESFET. The accuracy of the model is validated by comparing the analytical results with Silvaco simulation and experimental data.

Keywords

Three-gate SOI-MESFET Potential distribution Threshold voltage Subthreshold current Drain induced barrier lowering (DIBL) 3-D analytical model TCAD simulation 

References

  1. 1.
    Baishya, S., Mallik, A., Sarkar, C.K.: A pseudo two-dimensional subthreshold surface potential model for dual-material gate MOSFETs. IEEE Trans. Electron Devices 54, 2520–2525 (2007)CrossRefGoogle Scholar
  2. 2.
    Hou, C.-S., Wu, C.-Y.: A design strategy for short gate length SOI MESFETs. Solid-State Electron. 39, 361–367 (1996)CrossRefGoogle Scholar
  3. 3.
    Chin-Shan, H., Ching-Yuan, W.: A 2-D analytic model for the threshold-voltage of fully depleted short gate-length Si-SOI MESFETs. IEEE Trans. Electron Devices 42, 2156–2162 (1995)CrossRefGoogle Scholar
  4. 4.
    Hashemi, P., Behnam, A., Fathi, E., Afzali-Kusha, A., El Nokali, M.: 2-D modeling of potential distribution and threshold voltage of short channel fully depleted dual material gate SOI MESFET. Solid-State Electron. 49, 1341–1346 (2005)CrossRefGoogle Scholar
  5. 5.
    Balijepalli, A., Ervin, J., Lepkowski, W., Cao, Y., Thornton, T.J.: Compact modeling of a PD SOI MESFET for wide temperature designs. Microelectron. J. 40, 1264–1273 (2009)CrossRefGoogle Scholar
  6. 6.
    Van Zeghbroeck, B.: Principles of Semiconductor Devices, vol. 34. Colarado University, Colarado (2004)Google Scholar
  7. 7.
    Mohammadi, H., Abdullah, H., Dee, C.F.: A review on modeling the channel potential in multi-gate MOSFETs. Sains Malays. 43, 861–866 (2014)Google Scholar
  8. 8.
    Kilchytska, V., Collaert, N., Jurczak, M., Flandre, D.: Specific features of multiple-gate MOSFET threshold voltage and subthreshold slope behavior at high temperatures. Solid-State Electron. 51, 1185–1193 (2007)CrossRefGoogle Scholar
  9. 9.
    Pei, G., Kedzierski, J., Oldiges, P., Meikei, I., Kan, E.C.C.: FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron Devices 49, 1411–1419 (2002)CrossRefGoogle Scholar
  10. 10.
    Havaldar, D.S., Katti, G., DasGupta, N., DasGupta, A.: Subthreshold current model of FinFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 53, 737–742 (2006)CrossRefGoogle Scholar
  11. 11.
    Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Semianalytical modeling of short-channel effects in lightly doped silicon trigate MOSFETs. IEEE Trans. Electron Devices 55, 2623–2631 (2008)CrossRefGoogle Scholar
  12. 12.
    Akarvardar, K., Mercha, A., Cristoloveanu, S., Gentil, P., Simoen, E., Subramanian, V., et al.: A two-dimensional model for interface coupling in triple-gate transistors. IEEE Trans. Electron Devices 54, 767–775 (2007)CrossRefGoogle Scholar
  13. 13.
    Ritzenthaler, R., Lime, F., Faynot, O., Cristoloveanu, S., Iñiguez, B.: 3D analytical modelling of subthreshold characteristics in vertical multiple-gate FinFET transistors. Solid-State Electron. 65, 94–102 (2011)CrossRefGoogle Scholar
  14. 14.
    Hu, G., Hu, S., Feng, J., Liu, R., Wang, L., Zheng, L.: Analytical models for channel potential, threshold voltage, and subthreshold swing of junctionless triple-gate FinFETs. Microelectron. J. 50, 60–65 (2016)CrossRefGoogle Scholar
  15. 15.
    Jin, Y., Zeng, C., Ma, L., Barlage, D.: Analytical threshold voltage model with TCAD simulation verification for design and evaluation of tri-gate MOSFETs. Solid-State Electron. 51, 347–353 (2007)CrossRefGoogle Scholar
  16. 16.
    Tripathi, S., Narendar, V.: A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015)CrossRefGoogle Scholar
  17. 17.
    Saha, S.K.: Introduction to technology computer aided design. In: Sarkar, C.K. (ed.) Technology Computer Aided Design, pp. 17–60. CRC Press, Boca Raton (2016)Google Scholar
  18. 18.
    Vasileska, D., Goodnick, S.M., Klimeck, G.: Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press, Boca Raton (2016)Google Scholar
  19. 19.
    Stoer, J., Bartels, R., Gautschi, W., Bulirsch, R., Witzgall, C.: Introduction to Numerical Analysis. Springer, New York (2013)Google Scholar
  20. 20.
    Chiang, T.K., Wang, Y.H., Houng, M.P.: Modeling of threshold voltage and subthreshold swing of short-channel SOI MESFET’s. Solid-State Electron. 43, 123–129 (1999)CrossRefGoogle Scholar
  21. 21.
    Meel, K., Gopal, R., Bhatnagar, D.: Three-dimensional analytic modelling of front and back gate threshold voltages for small geometry fully depleted SOI MOSFET’s. Solid-State Electron. 62, 174–184 (2011)CrossRefGoogle Scholar
  22. 22.
    Pandey, P., Pal, B.B., Jit, S.: A new 2-D model for the potential distribution and threshold voltage of fully depleted short-channel Si-SOI MESFETs. IEEE Trans. Electron Devices 51, 246–254 (2004)CrossRefGoogle Scholar
  23. 23.
    Katti, G., DasGupta, N., DasGupta, A.: Threshold Voltage model for mesa-isolated small geometry fully depleted SOI MOSFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 51, 1169–1177 (2004)CrossRefGoogle Scholar
  24. 24.
    Ping Chin, Y., Fossum, J.G.: Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology. IEEE Trans. Electron Devices 42, 1605–1613 (1995)CrossRefGoogle Scholar
  25. 25.
    Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New York (2006)CrossRefGoogle Scholar
  26. 26.
    A. U. S. Manual, “Silvaco Int”, vol. 5. Santa Clara (2008)Google Scholar
  27. 27.
    Anvarifard, M.K., Orouji, A.A.: Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel. IEEE Trans. Electron Devices 65, 1653–1657 (2018)CrossRefGoogle Scholar
  28. 28.
    Jamali Mahabadi, S.E., Rajabi, S., Loiacono, J.: A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement. Superlattices Microstruct. 85, 872–879 (2015)CrossRefGoogle Scholar
  29. 29.
    Anvarifard, M.K., Orouji, A.A.: Stopping electric field extension in a modified nanostructure based on SOI technology—a comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)CrossRefGoogle Scholar
  30. 30.
    Mohammadi, H., Abdullah, H., Dee, C.F., Susthitha Menon, P.: A modified two dimensional analytical model for short-channel fully depleted SOI MESFET’s. Microelectron. Reliab. 83, 173–179 (2018)CrossRefGoogle Scholar
  31. 31.
    Fasarakis, N., Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Papathanasiou, K., Jomaah, J., et al.: Analytical unified threshold voltage model of short-channel FinFETs and implementation. Solid-State Electron. 64, 34–41 (2011)CrossRefGoogle Scholar
  32. 32.
    Lepkowski, W., Wilk, S.J., Thornton, T.J.: Complementary SOI MESFETs at the 45-nm CMOS Node. IEEE Electron Device Lett. 36, 14–16 (2015)CrossRefGoogle Scholar
  33. 33.
    Davis, H.F.: Fourier Series and Orthogonal Functions. Courier Corporation, Dover Publications (2012) Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hossein Mohammadi
    • 1
  • Huda Abdullah
    • 1
  • Dee Chang Fu
    • 2
  • P. Susthitha Menon
    • 2
  • Iraj Sadegh Amiri
    • 3
    • 4
  1. 1.Department of Electrical, Electronic and Systems Engineering, Faculty of EngineeringUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Institute of Microengineering and Nanoelectronics (IMEN)Universiti Kebangsaan Malaysia (UKM)BangiMalaysia
  3. 3.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations