Germanene nanotube electroresistive molecular device for detection of NO2 and SO2 gas molecules: a first-principles investigation

  • P. Snehha
  • V. Nagarajan
  • R. Chandiramouli


We explore the electronic properties of germanene nanotubes (GeNTs) using first-principles calculations with the non-equilibrium Green’s function technique. The adsorption of two different gases, namely NO2 and SO2, onto GeNT is investigated using van der Waals density functional technique. Moreover, the change in the band gap-energy is noticed upon interaction of small NO2 and SO2 gas molecules. The shift in the peaks is observed in the conduction band upon adsorption of small NO2 and SO2 molecules on the GeNT. The calculated adsorption energies range from − 0.156 to − 0.609 eV. The transmission spectrum showed that the transition of electrons is prominent for SO2 molecules rather than NO2 molecules onto the GeNT. In addition, the electron density diagram also indicate that a transfer of electrons occurs among the gas molecules and the GeNT electroresistive molecular device. The IV characteristics of GeNT device clearly reveal the change in the current, which varies in the magnitude from 10−9 to 10−6 A upon adsorption of gas molecules on GeNT device. Thus, we suggest that germanene nanotube molecular device can be employed for the detection of NO2 and SO2 small molecules.


Germanene Nanotube Molecular device Adsorption NO2 SO2 



Funding was provided by Nano Mission Council, Department of Science and Technology (IN) (Grant No. (No.SR/NM/NS-1011/2017(G))).

Supplementary material

10825_2018_1283_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2415 kb)


  1. 1.
    Capone, S., Forleo, A., Francioso, L., Rella, R., Siciliano, P., Spadavecchia, J., Presicce, D.S., Taurino, A.M.: Solid state gas sensors: state of the art and future activities. J. Optoelectron. Adv. M 5, 1335–1348 (2003)Google Scholar
  2. 2.
    Schwierz, F., Pezoldt, J., Granzner, R.: Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015)CrossRefGoogle Scholar
  3. 3.
    Dimoulas, A.: Silicene and germanene: silicon and germanium in the “flatland”. Microelectron. Eng. 131, 68–78 (2015)CrossRefGoogle Scholar
  4. 4.
    Hussain, T., Kaewmaraya, T., Chakraborty, S., Ahuja, R.: Defect and substitution-induced silicene sensor to probe toxic gases. J. Phys. Chem. C 120, 25256–25262 (2016)CrossRefGoogle Scholar
  5. 5.
    Roome, N.J., Carey, J.D.: Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl. Mater. Interfaces. 6, 7743–7750 (2014)CrossRefGoogle Scholar
  6. 6.
    Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012)CrossRefGoogle Scholar
  7. 7.
    Cahangirov, S., Topsakal, M., Aktürk, E., Šahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)CrossRefGoogle Scholar
  8. 8.
    Ye, X., Shao, Z., Zhao, H., Yang, L., Wang, C.: Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations. RSC Adv. 4, 21216–21220 (2014)CrossRefGoogle Scholar
  9. 9.
    Abhinav, E.M., Kavuri, S.N., Kumar, T.S., Thirupathi, M., Mohan, M.C., Reddy, A.S.: Analysis of molecular single-electron transistors using silicene, graphene and germanene. In: Satapathy, S., Raju, K., Mandal, J., Bhateja, V. (eds.) Proceedings of the Second International Conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing, vol. 379. Springer, New Delhi (2016)Google Scholar
  10. 10.
    Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)CrossRefGoogle Scholar
  11. 11.
    Endres, H., Gttler, W., Hartinger, R., Drost, S., Hellmich, W., Mtiller, G.: A thin-film SnO2 sensor system for simultaneous detection of CO and NO, with neural signal evaluation. Sens. Actuators B 36, 353–357 (1996)CrossRefGoogle Scholar
  12. 12.
    Arafat, M.M., Dinan, B., Akbar, S.A., Haseeb, A.S.M.A.: Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12, 7207–7258 (2012)CrossRefGoogle Scholar
  13. 13.
    Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B., Duan, W.: Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 112, 13442–13446 (2008)CrossRefGoogle Scholar
  14. 14.
    Chandiramouli, R., Nagarajan, V.: Adsorption studies of NH3 molecules on functionalized germanene nanosheet—a DFT study. Chem. Phys. Lett. 665, 22–30 (2016)CrossRefGoogle Scholar
  15. 15.
    Nagarajan, V., Chandiramouli, R.: NO2 adsorption behaviour on germanene nanosheet—a first-principles investigation. Superlattices Microstruct. 101, 160–171 (2017)CrossRefGoogle Scholar
  16. 16.
    Nagarajan, V., Bhattacharyya, A., Chandiramouli, R.: Adsorption of ammonia molecules and humidity on germanane nanosheet—a density functional study. J. Mol. Graph. Model. 79, 149–156 (2018)CrossRefGoogle Scholar
  17. 17.
    Nagarajan, V., Chandiramouli, R.: CO and NO monitoring using pristine germanene nanosheets: DFT study. J. Mol. Liq. 234, 355–363 (2017)CrossRefGoogle Scholar
  18. 18.
    Monshi, M.M., Aghaei, S.M., Calizo, I.: Doping and defect-induced germanene: a superior media for sensing H2S, SO2, and CO2 gas molecules. Surf. Sci. 665, 96–102 (2017)CrossRefGoogle Scholar
  19. 19.
    Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)CrossRefGoogle Scholar
  20. 20.
    Perdew, J., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many electron system. Phys. Rev. B 54, 16533–16539 (1996)CrossRefGoogle Scholar
  21. 21.
    Perdew, J., Chevary, J., Vosko, S., Jackson, K., Pederson, M., Singh, D., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)CrossRefGoogle Scholar
  22. 22.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  23. 23.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5118 (1976)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nagarajan, V., Chandiramouli, R.: First-principles studies on electronic properties of oligo-p-phenylene molecular device. Solid State Commun. 269, 50–57 (2018)CrossRefGoogle Scholar
  25. 25.
    Bhuvaneswari, R., Nagarajan, V., Chandiramouli, R.: First-principles investigation on switching properties of spiropyran and merocyanine grafted graphyne nanotube device. Chem. Phys. Lett. 691, 37–43 (2018)CrossRefGoogle Scholar
  26. 26.
    Nagarajan, V., Chandiramouli, R.: Applied surface science alcohol molecules adsorption on graphane nanosheets—a first- principles investigation. Appl. Surf. Sci. 441, 734–743 (2018)CrossRefGoogle Scholar
  27. 27.
    Bhuvaneswari, R., Nagarajan, V., Chandiramouli, R.: Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device—a first-principles study. Chem. Phys. 501, 78–85 (2018)CrossRefGoogle Scholar
  28. 28.
    Nagarajan, V., Chandiramouli, R.: Investigation of NH3 adsorption behavior on graphdiyne nanosheet and nanotubes: a first-principles study. J. Mol. Liq. 249, 24–32 (2018)CrossRefGoogle Scholar
  29. 29.
    Nagarajan, V., Chandiramouli, R.: Investigation on adsorption properties of CO and NO gas molecules on aluminene nanosheet: a density functional application. Mater. Sci. Eng. B 229, 193–200 (2018)CrossRefGoogle Scholar
  30. 30.
    Nagarajan, V., Srimathi, U., Chandiramouli, R.: First-principles insights on detection of dimethyl amine and trimethyl amine vapors using graphdiyne nanosheets. Comput. Theor. Chem. 1123, 119–127 (2018)CrossRefGoogle Scholar
  31. 31.
    Kaloni, T.P., Cheng, Y.C., Faccio, R., Schwingenschl, U.: Oxidation of monovacancies in graphene by oxygen molecules. J. Mater. Chem. 21, 18284–18288 (2011)CrossRefGoogle Scholar
  32. 32.
    Nagarajan, V., Dharani, S., Chandiramouli, R.: Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comput. Theor. Chem. 1125, 86–94 (2018)CrossRefGoogle Scholar
  33. 33.
    Amin, B., Kaloni, T.P., Schwingenschlogl, U.: Strain engineering of WS2, WSe2, and WTe2. RSC Adv. 4, 34561–34565 (2014)CrossRefGoogle Scholar
  34. 34.
    Matsuda, Y., Tahir-kheli, J., Goddard, W.A.: Definitive band gaps for single-wall carbon nanotubes. J. Phys. Chem. Lett. 1, 2946–2950 (2010)CrossRefGoogle Scholar
  35. 35.
    Gowtham, S., Scheicher, R.H., Pandey, R.: First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology 19, 125701 (2008)CrossRefGoogle Scholar
  36. 36.
    Nagarajan, V., Chandiramouli, R.: Adsorption behavior of NH3 and NO2 molecules on stanene and stanane nanosheets—a density functional theory study. Chem. Phys. Lett. 695, 162–169 (2018)CrossRefGoogle Scholar
  37. 37.
    Mukhopadhyay, S., Gowtham, S., Scheicher, R.H.: Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 21, 165703 (2010)CrossRefGoogle Scholar
  38. 38.
    Turi, L., Dannenberg, J.: Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction. J. Phys. Chem. 97, 2488–2490 (1993)CrossRefGoogle Scholar
  39. 39.
    Chandiramouli, R., Jeyaprakash, B.G.: Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv. 5, 43930–43940 (2015)CrossRefGoogle Scholar
  40. 40.
    Kaloni, T.P., Schreckenbach, G., Freund, M.S.: Large enhancement and tunable band gap in silicene by small organic molecule adsorption. J. Phys. Chem. C 118(40), 23361–23367 (2014)CrossRefGoogle Scholar
  41. 41.
    Kaloni, T.P.: Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. J. Phys. Chem. C 118, 25200–25208 (2014)CrossRefGoogle Scholar
  42. 42.
    Kaloni, T.P., Gangopadhyay, S., Singh, N., Jones, B., Schwingenschlog, U.: Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418 (2013)CrossRefGoogle Scholar
  43. 43.
    Kaloni, T.P., Schreckenbach, G., Freund, M.S., Schwingenschlög, U.: Current developments in silicene and germanene. Phys. Status Solidi RRL 10, 133–142 (2016)CrossRefGoogle Scholar
  44. 44.
    Nagarajan, V., Chandiramouli, R.: Borospherene molecular device for detection of n-butylamine vapors—a DFT study. IEEE Sens. J. 18, 948–955 (2018)CrossRefGoogle Scholar
  45. 45.
    Nagarajan, V., Chandiramouli, R.: First-principles investigation on interaction of NH3 gas on a silicene nanosheet molecular device. IEEE Trans. Nanotechnol. 16, 445–452 (2017)CrossRefGoogle Scholar
  46. 46.
    Wan, H., Xu, Y., Zhou, G.: Dual conductance, negative differential resistance, and rectifying behavior in a molecular device modulated by side groups. J. Chem. Phys. 136, 184704 (2012)CrossRefGoogle Scholar
  47. 47.
    Tan, C.M., Zhou, Y.H., Chen, C.Y., Yu, J.F., Chen, K.Q.: Spin filtering and rectifying effects in the zinc methyl phenalenyl molecule between graphene nanoribbon leads. Org. Electron. 28, 244–251 (2016)CrossRefGoogle Scholar
  48. 48.
    Nagarajan, V., Chandiramouli, R.: Switching properties of quinquephenylene molecular device—a first-principles approach. Chem. Phys. Lett. 675, 131–136 (2017)CrossRefGoogle Scholar
  49. 49.
    Büttiker, M., Imry, Y., Landauer, R., et al.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31(10), 6207 (1985)CrossRefGoogle Scholar
  50. 50.
    Wan, H., Zhou, B., Chen, X., Sun, C.Q., Zhou, G.: Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. J. Phys. Chem. C 116, 2570–2574 (2012)CrossRefGoogle Scholar
  51. 51.
    Nagarajan, V., Dhivya, G., Chandiramouli, R.: First-principles investigation on transport properties of Zn2SnO4 molecular device and response toward NO2 gas molecules. J. Comput. Electron. 17, 1–8 (2017)CrossRefGoogle Scholar
  52. 52.
    Zeng, J., Xie, F., Chen, K.Q.: High-efficiency spin-filtering and magnetoresistance effects in supramolecular spin valves. Carbon 98, 607–612 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ComputingSASTRA Deemed UniversityThanjavurIndia
  2. 2.School of Electrical and Electronics EngineeringSASTRA Deemed UniversityThanjavurIndia

Personalised recommendations