Advertisement

An analytical model for the surface potential and threshold voltage of a double-gate heterojunction tunnel FinFET

  • N. P. MaityEmail author
  • Reshmi Maity
  • Srimanta Baishya
Article
  • 28 Downloads

Abstract

A double-gate (DG) heterojunction tunnel FinFET structure with a source overlap region was analyzed to optimize its performance and validate technology computer-aided design (TCAD) simulation results by modeling the surface potential, electric field, and threshold voltage. A compact model of the surface potential was developed by applying the solution of the two-dimensional (2-D) Poisson equation obtained using the superposition technique. The gate threshold voltage was extracted by using the transconductance change method. The effect of high-k dielectric material (HfO2) on the surface potential model was also addressed. The analytical predictions were compared with and validated against the results obtained using Synopsys TCAD software, revealing excellent agreement. The percentage error of the analytical approach for the threshold voltage was also evaluated with respect to the TCAD simulation results.

Keywords

DG tunnel FinFET Threshold voltage Surface potential TCAD 

Notes

Acknowledgements

The authors are highly indebted to the TCAD Laboratory, National Institute of Technology, Silchar, India for supporting this technical work. The authors would like to thank Mr. Praveen Gunturi, National Institute of Technology, Silchar for support of this technical work.

References

  1. 1.
    Dennard, R., Gaensslen, F., Yu, H., Rideout, V., Bassous, E., LeBlanc, A.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid State Circuits 9, 256–268 (1974)CrossRefGoogle Scholar
  2. 2.
    Lo, S., Buchanan, D., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209–212 (1997)CrossRefGoogle Scholar
  3. 3.
    Tanaka, T., Usuki, T., Futatsugi, T., Momiyama, Y., Sugii T.: Vth fluctuation induced by statistical variation of pocket dopant profile. In: IEEE International Electron Devices Meeting, pp. 271–274 (2000)Google Scholar
  4. 4.
    Kahng, D., Atalla, M.: Silicon–silicon dioxide field induced surface devices. In: IRE-AIEE Solid-State Device Research Conference (1960)Google Scholar
  5. 5.
    Dennard, R., Gaensslen, F., Kuhn, L., Yu, H.: Design of micron MOS switching devices. In: IEDM Tech. Dig., pp. 168–170 (1972)Google Scholar
  6. 6.
    Maity, N.P., Maity, R., Baishya, S.: Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: application to high-k material HfO2 based MOS devices. Superlattices Microstruct. 111, 628–641 (2017)CrossRefGoogle Scholar
  7. 7.
    Maity, N.P., Maity, R., Thapa, R.K., Baishya, S.: A tunneling current density model for ultra thin HfO2 high-k dielectric material based MOS devices. Superlattices Microstruct. 95, 24–32 (2016)CrossRefGoogle Scholar
  8. 8.
    Frank, D., Dennard, R., Nowak, E., Solomon, P., Taur, Y., Wong, H.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Cho, H., Kang, C., Rhee, S., Kim, Y., Choi, R., Kang, C., Choi, C., Akbar, M.: High-k dielectrics and MOSFET characteristics. In: IEDM Tech. Dig., pp. 95–98 (2003)Google Scholar
  10. 10.
    Huang, X., Lee, X., Kuo, C., Hisamoto, D., Chang, L., Kedzierski, J., Anderson, E., Takeuchi, H., Choi, Y., Asano, K., Subramanian, V., King, T., Bokor, J., Hu, C.: Sub 50-nm FinFET: PMOS. In: IEDM Tech. Dig., pp. 341–344 (1999)Google Scholar
  11. 11.
    Koley, K., Dutta, A., Saha, S., Sarkar, C.K.: Analysis of high-k spacer asymmetric underlap DG-MOSFET for SOC application. IEEE Trans. Electron Devices 62, 1733–1739 (2015)CrossRefGoogle Scholar
  12. 12.
    Gaynor, B., Hassoun, S.: Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Trans. Electron Devices 61, 2738–2745 (2014)CrossRefGoogle Scholar
  13. 13.
    Hong, Y., Guo, Y., Yang, H., Yao, J., Zhang, J., Ji, X.: A novel bulk- FinFET with dual-material gate. In: IEEE International Conference on Solid-State and Integrated Circuit Technology (2014)Google Scholar
  14. 14.
    Riddit, C., Alexander, C., Brown, A., Roy, S., Asenov, A.: Simulation of “Ab Initio” quantum confinement scattering in UTB MOSFETs using three-dimensional ensemble Monte Carlo. IEEE Trans. Electron Devices 58, 600–609 (2011)CrossRefGoogle Scholar
  15. 15.
    Lattanzio, L., Micheilis, L., Ionescu, A.: Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33, 167–170 (2012)CrossRefGoogle Scholar
  16. 16.
    Ortiz-Conde, A., Sucre-González, A., Torres-Torres, R., Molina, J., Murphy-Arteaga, R., García-Sánchez, F.: Conductance-to-current-ratio-based parameter extraction in MOS leakage current models. IEEE Trans. Electron Devices 63, 3844–3850 (2016)CrossRefGoogle Scholar
  17. 17.
    Lu, H., Taur, Y.: An analytic potential model for symmetric and asymmetric DG MOSFETs. IEEE Trans. Electron Devices 53, 1161–1169 (2006)CrossRefGoogle Scholar
  18. 18.
    Shih, C., Chien, N.: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32, 1498–1500 (2011)CrossRefGoogle Scholar
  19. 19.
    Taur, Y., Liang, X., Wang, W., Lu, H.: A continuous, analytic drain current model for DG MOSFETs. IEEE Electron Device Lett. 25, 107–110 (2004)CrossRefGoogle Scholar
  20. 20.
    Chen, Q., Harrell, E., Meindl, J.: A physical short channel threshold voltage model for undoped symmetric double gate MOSFETs. IEEE Trans. Electron Devices 50, 1631–1638 (2003)CrossRefGoogle Scholar
  21. 21.
    Liang, X., Taur, Y.: A 2-D analytical solution for SCEs in DGMOSFETs. IEEE Trans. Electron Devices 51, 1385–1392 (2004)CrossRefGoogle Scholar
  22. 22.
    Suzuki, K., Tanaka, T., Tosaka, Y., Horie, H., Arimoto, Y.: Scaling theory for double-gate SOI MOSFETs. IEEE Trans. Electron Devices 40, 2326–2330 (1993)CrossRefGoogle Scholar
  23. 23.
    Liu, L., Mohata, D., Datta, S.: Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans. Electron Devices 57, 827–835 (2012)Google Scholar
  24. 24.
    Pan, A., Chui, C.: A quasi-analytical model for double-gate tunneling field-effect transistors. IEEE Electron Device Lett. 33, 1468–1471 (2012)CrossRefGoogle Scholar
  25. 25.
    Liu, Z., Hu, C., Huang, J., Chan, T., Jeng, M., Ko, P., Cheng, Y.: Threshold voltage model for deep-submicrometer MOSFETs. IEEE Trans. Electron Devices 40, 86–96 (1993)CrossRefGoogle Scholar
  26. 26.
    Ionescu, A., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–338 (2011)CrossRefGoogle Scholar
  27. 27.
    Boucart, K., Ionescu, A.: Threshold voltage in tunnel FETs: physical definition, extraction, scaling and impact on IC design. In: 37th ESSDERC, pp. 299–302 (2007)Google Scholar
  28. 28.
    Bardon, M., Neves, H., Puers, R., Hoof, C.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–835 (2010)CrossRefGoogle Scholar
  29. 29.
    Booth, R., White, M., Wong, H., Krutsick, T.: The effect of channel implants on MOS transistor characterization. IEEE Trans. Electron Devices ED 34, 2501–2510 (1987)CrossRefGoogle Scholar
  30. 30.
    Chander, S., Baishya, S.: A two-dimensional gate threshold voltage model for a heterojunction SOI-tunnel FET with oxide/source overlap. IEEE Electron Device Lett. 36, 714–717 (2015)CrossRefGoogle Scholar
  31. 31.
    Maity, N., Maity, R., Thapa, R., Baishya, S.: Study of interface charge densities for ZrO2 and HfO2 based metal–oxide–semiconductor devices. Adv. Mater. Sci. Eng. 2014, 1–6 (2014)CrossRefGoogle Scholar
  32. 32.
    Maity, N., Maity, R., Baishya, S.: A tunneling current model with a realistic barrier for ultra-thin high-k dielectric ZrO2 material based MOS devices. Silicon 10, 1645–1652 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMizoram UniversityAizawlIndia
  2. 2.Department of Electronics & Communication EngineeringNational Institute of TechnologySilcharIndia

Personalised recommendations