Journal of Computational Electronics

, Volume 18, Issue 1, pp 28–36 | Cite as

Efficient two-level parallelization approach to evaluate spin relaxation in a strained thin silicon film

  • Joydeep GhoshEmail author
  • Dmitry Osintsev
  • Viktor Sverdlov


The evaluation of the spin lifetime in an ultra-thin silicon film is a massive computational challenge because of the necessity of performing appropriate double integration of the strongly scattering momentum-dependent spin relaxation rates. We have tackled the problem by dividing the whole computation range into two levels. Our scheme in each level is based on a hybrid parallelization approach, using the message passing interface MPI and OpenMP. In the first level, the algorithm precalculates the subband wave functions corresponding to fixed energies and archives the results in a file-based cache to reduce memory consumption. In the second level, we compute the spin relaxation time by using the archived data in parallel. This two-level computation approach shows an excellent parallel speedup, and most efficient ways to maximally utilize the computational resources are described. Finally, how an application of shear strain can dramatically increase the spin lifetime is shown.


Message passing interface Open Multi-Processing Hybrid parallelization Spin lifetime 



The computational results presented have been partly achieved using the Vienna Scientific Cluster (VSC).


  1. 1.
    Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)CrossRefGoogle Scholar
  2. 2.
    Jansen, R.: Silicon spintronics. Nat. Mat. 11, 400–408 (2012)CrossRefGoogle Scholar
  3. 3.
    Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)CrossRefGoogle Scholar
  4. 4.
    MPI 1.1 Standard, Accessed 2015
  5. 5.
    L. Dagum, R. Menon, OpenMP: An industry standard API for shared-memory programming. In: Proc. in IEEE Computational Science and Engineering, pp. 46–55 (1998)Google Scholar
  6. 6.
    Jost, G., Jin, H., an Mey, D. Hatay F. F.: Comparing the OpenMP, MPI, and hybrid programming paradigms on an SMP cluster. NAS Technical Report NAS-03-019, pp. 1–10 (2003)Google Scholar
  7. 7.
    Tang, S., Lee,B. -S., He B.: Speedup for multi-level parallel computing. In: Proc. in International Parallel and Distributed Processing Symposium Workshops & Ph.D. Forum, pp. 537–546 (2012)Google Scholar
  8. 8.
    Fabian, J., Matos-Abiaguea, A., Ertlera, Ch., Stano, P., Zutic, I.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
  9. 9.
    Zutic, I., Fabian, J., Das Sarma, S.: Semiconductor spintronics. Acta Phys. Slovaca 57, 567–907 (2007)Google Scholar
  10. 10.
    Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)CrossRefGoogle Scholar
  11. 11.
    Sverdlov, V., Selberherr, S.: Silicon spintronics: progress and challenges. Phys. Reports 585, 1–40 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)CrossRefGoogle Scholar
  13. 13.
    Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr, S.: Variation of spin lifetime with spin injection orientation in strained thin silicon films. ECS Trans. 66(5), 233–240 (2015)CrossRefGoogle Scholar
  14. 14.
    Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr, S.: Enhancement of electron spin relaxation time in thin SOI films by spin injection orientation and uniaxial stress. J. Nano Res. 39, 34–42 (2016)CrossRefGoogle Scholar
  15. 15.
    Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S.: Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84, 115–117 (2004)CrossRefGoogle Scholar
  16. 16.
    Osintsev, D.: Modeling Spintronic Effects in Silicon (Dissertation). Institute for Microelectronics, TU Wien (2014)Google Scholar
  17. 17.
    Ghosh, J.: Modeling Spin-Dependent Transport in Silicon (Dissertation). Institute for Microelectronics, TU Wien (2016)Google Scholar
  18. 18.
    Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr S.: Dependence of spin lifetime on spin injection orientation in strained silicon films. In: Proc. in Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, pp. 285–288 (2015)Google Scholar
  19. 19.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band \(\mathbf{k \cdot p}\) calculation of the hole mobility in silicon inversion layers: dependence on surface orientation. strain, and silicon thickness. J. Appl. Phys. 94, 1079–1095 (2003)CrossRefGoogle Scholar
  20. 20.
    Ghosh J., Osintsev D., Sverdlov V., Weinbub J., Selberherr S. Evaluation of spin lifetime in thin-body FETs: a high performance computing approach. In: Lirkov I., Margenov S., Waśniewski J. (eds.) Large-Scale Scientific Computing. LSSC 2015. Lecture Notes in Computer Science, vol. 9374. Springer, Cham (2015)Google Scholar
  21. 21.
    Sverdlov, V.: Strain-induced Effects in Advanced MOSFETs. Springer, Wien - New York (2011)CrossRefGoogle Scholar
  22. 22.
    Nonlinear Optimization, Accessed 2015
  23. 23.
    Boost Serialization Library, Accessed 2015
  24. 24.
    Vienna Scientific Cluster, Accessed 2015
  25. 25.
    Boost Chrono Library, Accessed 2015
  26. 26.
    Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr, S.: Intersubband spin relaxation reduction and spin lifetime enhancement by strain in SOI structures. Microelectron. Eng. 147, 89–91 (2015)CrossRefGoogle Scholar
  27. 27.
    Ghosh, J., Sverdlov, V., Selberherr S.: Influence of valley splitting on spin relaxation time in a strained thin silicon film. In: Proc. in International Workshop on Computational Electronics, pp. 1–4 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of TechnologyMumbaiIndia
  2. 2.Singularis LabVolgogradRussia
  3. 3.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations