Journal of Computational Electronics

, Volume 18, Issue 1, pp 300–307 | Cite as

Modeling and analysis of an Ni:ZnO-based Schottky pattern for NO2 detection

  • Deepak PunethaEmail author
  • Himanshu Dixit
  • Saurabh Kumar Pandey


In recent years, new emerging oxide materials have demonstrated significant potential for use in gas sensors. We performed a theoretical investigation and analysis of an Ni-doped ZnO (NZO)-based gas sensor. The conductivity and sensitivity of the gas-sensing layer are illustrated as functions of the temperature and gas concentration. The analysis was carried out for an oxidizing agent, i.e., NO2, in which charge is attracted to the adsorbent layer and increases its resistance. The simulation results revealed the variation in resistance versus the temperature and gas concentration. To confirm the feasibility of the model, all the simulation results were compared with reported experimental work. This work will aid researchers in a reasonable choice of materials for and optimal design of high-performance gas sensors.


COMSOL multiphysics Gas sensor NO2 detection NZO thin film Schottky pattern 


  1. 1.
    Williams, D.E.: Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem. 57, 1–16 (1999)Google Scholar
  2. 2.
    Jimenez-Cadena, G., Riu, J., Rius, F.X.: Gas sensors based on nanostructured materials. Analyst 132(11), 1083–1099 (2007)Google Scholar
  3. 3.
    Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)Google Scholar
  4. 4.
    Jagadish, C., Pearton, S.J. (eds.): Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. Elsevier, Amsterdam (2011)Google Scholar
  5. 5.
    Coleman, V.A., Jagadish, C.: Basic properties and applications of ZnO. In: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (2006)Google Scholar
  6. 6.
    Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)Google Scholar
  7. 7.
    Fan, Z., Lu, J.G.: Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005)Google Scholar
  8. 8.
    Chen, T.-M., Kuschner, W.G., Gokhale, J., Shofer, S.: Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 333(4), 249–256 (2007)Google Scholar
  9. 9.
    National Research Council: Acute Toxicity of Nitrogen Dioxide (1998)Google Scholar
  10. 10.
    Ganbavle, V.V., Inamdar, S.I., Agawane, G.L., Kim, J.H., Rajpure, K.Y.: Synthesis of fast response, highly sensitive and selective Ni: ZnO based NO2 sensor. Chem. Eng. J. 286, 36–47 (2016)Google Scholar
  11. 11.
    Lupan, O., Shishiyanu, S., Chow, L., Shishiyanu, T.: Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. Thin Solid Films 516(10), 3338–3345 (2008)Google Scholar
  12. 12.
    Xu, M., Li, Q., Ma, Y., Fan, H.: Ni-doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors. Sens. Actuators B Chem. 199, 403–409 (2014)Google Scholar
  13. 13.
    Shirage, P.M., Rana, A.K., Kumar, Y., Sen, S., Leonardi, S.G., Neri, G.: Sr- and Ni-doping in ZnO nanorods synthesized by a simple wet chemical method as excellent materials for CO and CO2 gas sensing. RSC Adv. 6(86), 82733–82742 (2016)Google Scholar
  14. 14.
    Comsol, A.B.: COMSOL Multiphysics User’s Guide. Version, p. 333 (2005)Google Scholar
  15. 15.
    Dickinson, E.J.F., Ekström, H., Fontes, Ed: COMSOL multiphysics: finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 71–74 (2014)Google Scholar
  16. 16.
    Endres, H.-E., Jander, H.D., Göttler, W.: A test system for gas sensors. Sens. Actuators B Chem. 23(2–3), 163–172 (1995)Google Scholar
  17. 17.
    Harvey, I., Coles, G., Watson, J.: The development of an environmental chamber for the characterization of gas sensors. Sens. Actuators 16(4), 393–405 (1989)Google Scholar
  18. 18.
    Niyat, F.Y., Abadi, M.H.S.: COMSOL-based modeling and simulation of SnO2/rGO gas sensor for detection of NO2. Sci. Rep. 8(1), 2149 (2018)Google Scholar
  19. 19.
    Lazik, D., Sood, P.: Approach for self-calibrating CO2 measurements with linear membrane-based gas sensors. Sensors 16(11), 1930 (2016)Google Scholar
  20. 20.
    Jaaniso, R., Tan, O.K. (eds.): Semiconductor Gas Sensors. Elsevier, Amsterdam (2013)Google Scholar
  21. 21.
    Eranna, G.: Metal Oxide Nanostructures as Gas Sensing Devices. CRC Press, Boca Raton (2016)Google Scholar
  22. 22.
    Trott, G.R., Shorey, A.: Glass wafer mechanical properties: a comparison to silicon. In: 2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 359–362. IEEE (2011)Google Scholar
  23. 23.
    Krýsa, J., Novotná, P., Kment, Š., Mills, A.: Effect of glass substrate and deposition technique on the properties of sol gel TiO2 thin films. J. Photochem. Photobiol. A 222(1), 81–86 (2011)Google Scholar
  24. 24.
    Lee, S., Hinchet, R., Lee, Y., Yang, Y., Lin, Z.-H., Ardila, G., Montès, L., Mouis, M., Wang, Z.L.: Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv. Funct. Mater. 24(8), 1163–1168 (2014)Google Scholar
  25. 25.
    Sun, X.W., Liu, Z.J., Chen, Q.F., Lu, H.W., Song, T., Wang, C.W.: Heat capacity of ZnO with cubic structure at high temperatures. Solid State Commun. 140(5), 219–224 (2006)Google Scholar
  26. 26.
    Ghosh, C.K., Malkhandi, S., Mitra, M.K., Chattopadhyay, K.K.: Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J. Phys. D Appl. Phys. 41(24), 245113 (2008)Google Scholar
  27. 27.
    Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., Nuzzo, R.G.: Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113(19), 7152–7167 (1991)Google Scholar
  28. 28.
    Mackay, T.G.: On the effective permittivity of silver-insulator nanocomposites. J. Nanophotonics 1(1), 019501 (2007)Google Scholar
  29. 29.
    Vaartstra, B.A., Marsh, E.P.: Methods for Preparing Ruthenium Oxide Films. U.S. Patent 6,133,159, issued October 17, 2000Google Scholar
  30. 30.
    Ferizović, D., Hussey, L.K., Huang, Y.-S., Muñoz, M.: Determination of the room temperature thermal conductivity of RuO2 by the photothermal deflection technique. Appl. Phys. Lett. 94(13), 131913 (2009)Google Scholar
  31. 31.
    Reddy, Y.K.V., Mergel, D.: Structural and electrical properties of RuO2 thin films prepared by rf-magnetron sputtering and annealing at different temperatures. J. Mater. Sci. Mater. Electron. 17(12), 1029–1034 (2006)Google Scholar
  32. 32.
    Barsan, N., Koziej, D., Weimar, U.: Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 121(1), 18–35 (2007)Google Scholar
  33. 33.
    Clifford, P.K., Tuma, D.T.: Characteristics of semiconductor gas sensors II. Transient response to temperature change. Sens. Actuators 3, 255–281 (1982)Google Scholar
  34. 34.
    Wang, C.C., Akbar, S.A., Madou, M.J.: Ceramic based resistive sensors. J. Electroceram. 2(4), 273–282 (1998)Google Scholar
  35. 35.
    Mishra, V.N., Agarwal, R.P.: Sensitivity, response and recovery time of SnO2 based thick-film sensor array for H2, CO, CH4 and LPG. Microelectron. J. 29(11), 861–874 (1998)Google Scholar
  36. 36.
    Comini, E.: Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568(1–2), 28–40 (2006)Google Scholar
  37. 37.
    Gomri, S., et al.: Adsorption–desorption noise in gas sensors: modelling using Langmuir and Wolkenstein models for adsorption. Sens. Actuators B Chem. 114(1), 451–459 (2006)Google Scholar
  38. 38.
    Esser, P., Gopel, W.: Physical adsorption on single crystal zinc oxide. Surf. Sci. 97, 309–318 (1980)Google Scholar
  39. 39.
    Wilson, D.M., Hoyt, S., Janata, J., Booksh, K., Obando, L.: Chemical sensors for portable, handheld field instruments. IEEE Sens. J. 1(4), 256–274 (2001)Google Scholar
  40. 40.
    Takata, M., Tsubone, D., Yanagida, H.: Dependence of electrical conductivity of ZnO on degree of sensing. J. Am. Ceram. Soc. 59, 4–8 (1976)Google Scholar
  41. 41.
    Sadek, A.Z., et al.: Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing. IEEE Sens. J. 7(6), 919–924 (2007)Google Scholar
  42. 42.
    Stănoiu, A., Simion, C.E., Somăcescu, S.: NO2 sensing mechanism of ZnO–Eu2O3 binary oxide under humid air conditions. Sens. Actuators B Chem. 186, 687–694 (2013)Google Scholar
  43. 43.
    Saadi, L., Lambert-Mauriat, C., Oison, V., Ouali, H., Hayn, R.: Mechanism of NOx sensing on WO3 surface: first principle calculations. Appl. Surf. Sci. 293, 76–79 (2014)Google Scholar
  44. 44.
    Caglar, M., Caglar, Y., Ilican, S.: The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method. J. Optoelectron. Adv. Mater. 8(4), 1410 (2006)Google Scholar
  45. 45.
    Srikant, V., Clarke, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)Google Scholar
  46. 46.
    Khemiri, N., et al.: Highly absorbing Cu–In–O thin films for photovoltaic applications. Thin Solid Films 516(20), 7031–7035 (2008)Google Scholar
  47. 47.
    Peres, N.M.R., Guinea, F., Neto, A.H.C.: Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73(12), 125411 (2006)Google Scholar
  48. 48.
    Dingle, R.B., Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation, vol. 48. Academic, London (1973)zbMATHGoogle Scholar
  49. 49.
    Ahmadi, M.T., et al.: Graphene nanoribbon conductance model in parabolic band structure. J. Nanomater. 2010, 12 (2010)Google Scholar
  50. 50.
    Kažukauskas, V., et al.: Electrical conductivity of carbon nanotubes and polystyrene composites. Phys. Status Solidi (c) 5(9), 3172–3174 (2008)Google Scholar
  51. 51.
    Areshkin, D.A., Gunlycke, D., White, C.T.: Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7(1), 204–210 (2007)Google Scholar
  52. 52.
    Ahamdi, M.T., Ismail, R., Anwar, S.: Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global, USA (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology PatnaPatnaIndia
  2. 2.Department of Electronics EngineeringRajasthan Technical UniversityKotaIndia

Personalised recommendations