Journal of Computational Electronics

, Volume 17, Issue 4, pp 1478–1491 | Cite as

A first-principles study of the structural, elastic, electronic, vibrational, and optical properties of BaSe1−xTex

  • Bouhafs Khalfallah
  • Fatima-Zohra Driss-Khodja
  • Fatiha Saadaoui
  • Mohammed Driss-Khodja
  • Abdelkader Boudali
  • Hanifi Bendaoud
  • Bachir Bouhafs


The structural, elastic, electronic, vibrational, and optical properties of BaSe1−xTex alloys are investigated by means of the full-potential linearized augmented plane wave method. The exchange–correlation effects are treated with the local density approximation, as well as the GGA-PBE, GGA-PBEsol, and GGA + mBJ schemes of the generalized gradient approximation. Ternary BaSe1−xTex compounds have not yet been synthesized. Improved predictions of the structural parameters are obtained using the GGA-PBEsol approach. Calculations of the electronic and optical properties with the GGA + mBJ approach yield accurate results. Ternary BaSe1−xTex alloys are wide-band-gap semiconductors with a direct gap Γ–Γ. The upper valence band is mainly due to Se p and Te p states, while the bottom of the conduction band results essentially from Ba d states. The dielectric function, refractive index, reflectivity, absorption coefficient, and energy-loss function are calculated in the range 0–35 eV. The increase in x gives rise to a redshift of the optical spectra. BaSe1−xTex alloys exhibit reflective properties of metals in some energy ranges. The static dielectric constant ɛ1(0) and the static refractive index n0 are calculated. The investigation of the elastic and vibrational properties shows that ternary BaSe1−xTex should be mechanically and dynamically stable, elastically anisotropic, brittle, and relatively soft.


BaSe1−xTex Wide-band-gap semiconductors Structural parameters Electronic properties Optical properties Phonon dispersion 


  1. 1.
    Heng, K.L., Chua, S.J., Wu, P.: Prediction of semiconductor material properties by the properties of their constituent chemical elements. Chem. Mater. 12, 1648–1653 (2000)CrossRefGoogle Scholar
  2. 2.
    Bouhemadou, A., Khenata, R., Zegrar, F., Sahnoun, M., Baltache, H., Reshak, A.H.: Ab initio study of structural, electronic, elastic and high pressure properties of barium chalcogenides. Comput. Mater. Sci. 38, 263–270 (2006)CrossRefGoogle Scholar
  3. 3.
    Kalpana, G., Palanivel, B., Rajagopalan, M.: Electronic structure and structural phase stability in BaS, BaSe, and BaTe. Phys. Rev. B 50, 12318–12325 (1994)CrossRefGoogle Scholar
  4. 4.
    Benamrani, A., Kassali, K., Bouamama, Kh.: Pseudopotential study of barium chalcogenides under hydrostatic pressure. High Pres. Res. 30, 207–2018 (2010)CrossRefGoogle Scholar
  5. 5.
    Wei, S.-H., Krakauer, H.: Local-density-functional calculations of the pressure-induced metallization of BaSe and BaTe. Phys. Rev. Lett. 55, 1200–1203 (1985)CrossRefGoogle Scholar
  6. 6.
    Carlsson, A.E., Wilkins, J.W.: Band-overlap metallization of BaS, BaSe, and BaTe. Phys. Rev. B 29, 5836–5839 (1984)CrossRefGoogle Scholar
  7. 7.
    Dadsetani, M., Pourghazi, A.: The dielectric constant of barium mono-chalcogenides and their improved band gap results. Opt. Commun. 266, 562–564 (2006)CrossRefGoogle Scholar
  8. 8.
    Feng, Z., Hu, H., Lv, Z., Cui, S.: First-principles study of electronic and optical properties of BaS, BaSe and BaTe. Cent. Eur. J. Phys. 8, 782–788 (2010)CrossRefGoogle Scholar
  9. 9.
    Drablia, S., Meradji, H., Ghemid, S., Boukhris, N., Bouhafs, B., Nouet, G.: Electronic and optical properties of BaO, BaS, BaSe, BaTe and BaPo compounds under hydrostatic pressure. Mod. Phys. Lett. B 23, 3065–3079 (2009)CrossRefGoogle Scholar
  10. 10.
    El Haj Hassan, F., Akbarzadeh, H.: First-principles elastic and bonding properties of barium chalcogenides. Comput. Mater. Sci. 38, 362–368 (2006)CrossRefGoogle Scholar
  11. 11.
    Bhardwaj, P., Singh, S., Gaur, N.K.: Structural and elastic properties of barium chalcogenides (BaX, X = O, Se, Te) under high pressure. Open Physics 6, 223–229 (2008)CrossRefGoogle Scholar
  12. 12.
    Tuncel, E., Colakoglu, K., Deligoz, E., Ciftci, Y.O.: A first-principles study on the structural, elastic, vibrational, and thermodynamical properties of BaX (X = S, Se, and Te). J. Phys. Chem. Solids 70, 371–378 (2009)CrossRefGoogle Scholar
  13. 13.
    Arya, B.S., Aynyas, M., Sanyal, S.P.: High pressure study of structural and elastic properties of barium chalcogenides. Indian J. Pure Appl. Phys. 46, 722–726 (2008)Google Scholar
  14. 14.
    Rao, B.S., Sanyal, S.P.: High pressure structural phase transition in BaSe and BaTe. Phys. Status Solidi B 165, 369–375 (1991)CrossRefGoogle Scholar
  15. 15.
    Grzybowski, T.A., Ruoff, A.L.: High-pressure phase transition in BaSe. Phys. Rev. B 27, 6502–6503 (1983)CrossRefGoogle Scholar
  16. 16.
    Grzybowski, T.A., Ruoff, A.L.: Band-overlap metallization of BaTe. Phys. Rev. Lett. 53, 489–492 (1984)CrossRefGoogle Scholar
  17. 17.
    Syassen, K., Christensen, N.E., Winzen, H., Fischer, K., Evers, J.: Optical response and band-structure calculations of alkaline-earth tellurides under pressure. Phys. Rev. B 35, 4052–4059 (1987)CrossRefGoogle Scholar
  18. 18.
    Kaneko, Y., Koda, T.: New developments in IIa–VIb (alkaline–earth chalcogenide) binary semiconductors. J. Cryst. Growth 86, 72–78 (1988)CrossRefGoogle Scholar
  19. 19.
    Pourghazi, A., Dadsetani, M.: Electronic and optical properties of BaTe, BaSe and BaS from first principles. Phys. B 370, 35–43 (2005)CrossRefGoogle Scholar
  20. 20.
    Gokoglu, G.: First principles study of barium chalcogenides. J. Phys. Chem. Solids 69, 2924–2927 (2008)CrossRefGoogle Scholar
  21. 21.
    Straub, G.K., Harrison, W.A.: Self-consistent tight-binding theory of elasticity in ionic solids. Phys. Rev. B 39, 10325–10330 (1989)CrossRefGoogle Scholar
  22. 22.
    Kalpana, G., Palanivel, B., Rajagopalan, M.: Structural phase stability in BaSe. Phys. Status Solidi B 184, 153–157 (1994)CrossRefGoogle Scholar
  23. 23.
    Lin, G.Q., Gong, H., Wu, P.: Electronic properties of barium chalcogenides from first-principles calculations: tailoring wide-band-gap II–VI semiconductors. Phys. Rev. B 71, 085203 (2005)CrossRefGoogle Scholar
  24. 24.
    Drablia, S., Boukhris, N., Boulechfar, R., Meradji, H., Ghemid, S., Ahmed, R., Bin Omran, S., El Haj Hassan, F., Khenata, R.: Ab initio calculations of the structural, electronic, thermodynamic and thermal properties of BaSe1−xTex alloys. Phys. Scr. 92, 105701 (2017)CrossRefGoogle Scholar
  25. 25.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kohn, W., Sham, L.J.: Self-consistent equation including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Blaha, P., Schwarz, K., Madsen, K., Kvasnicka, D., Luitz, J.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties. Techn. Universität, Wien (2001)Google Scholar
  28. 28.
    Wang, W., Fan, H., Ye, Y.: Effect of electric field on the structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory. Polymer 51, 3575–3581 (2010)CrossRefGoogle Scholar
  29. 29.
    Liu, K., Fan, H., Ren, P., Yang, C.: Structural, electronic and optical properties of BiFeO3 studied by first-principles. J. Alloys Compd. 509, 1901–1905 (2011)CrossRefGoogle Scholar
  30. 30.
    Liu, X., Fan, H.-Q.: Theoretical studies on electronic structure and optical properties of Bi2WO6. Optik 158, 962–969 (2018)CrossRefGoogle Scholar
  31. 31.
    Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)CrossRefGoogle Scholar
  32. 32.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)CrossRefGoogle Scholar
  33. 33.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  34. 34.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)CrossRefGoogle Scholar
  35. 35.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Erratum: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 102, 039902 (2009)CrossRefGoogle Scholar
  36. 36.
    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  37. 37.
    Kaneko, Y., Morimoto, K., Koda, T.: Optical properties of alkaline-earth chalcogenides. I. Single crystal growth and infrared reflection spectra due to optical phonons. J. Phys. Soc. Jpn. 51, 2247–2254 (1982)CrossRefGoogle Scholar
  38. 38.
    Bridgman, P.W.: The compression of 46 substances to 50,000 kg/cm2. Proc. Am. Acad. Arts Sci. 74, 21–51 (1940)CrossRefGoogle Scholar
  39. 39.
    Bahloul, B., Bentabet, A., Amirouche, L., Bouhadda, Y., Bounab, S., Deghfel, B., Fenineche, N.: Ab initio calculations of structural, electronic, optical, and thermodynamic properties of alkaline earth tellurides BaxSr1−xTe. J. Phys. Chem. Solids 75, 307–314 (2014)CrossRefGoogle Scholar
  40. 40.
    Lapeyre, G.J., Hensley, E.B.: Melting point and growth of barium telluride single crystals. J. Appl. Phys. 36, 2054–2056 (1965)CrossRefGoogle Scholar
  41. 41.
    Chen, X.-Q., Niu, H., Li, D., Li, Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011)CrossRefGoogle Scholar
  42. 42.
    Anderson, O.L., Nafe, J.E.: The bulk modulus–volume relationship for oxide compounds and related geophysical problems. J. Geophys. Res. 70, 3951–3963 (1965)CrossRefGoogle Scholar
  43. 43.
    Born, M., Huang, K.: Dynamical theory of crystal lattices. Clarendon, Oxford (1956)zbMATHGoogle Scholar
  44. 44.
    Haines, J., Léger, J.M., Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1–23 (2001)CrossRefGoogle Scholar
  45. 45.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)CrossRefGoogle Scholar
  46. 46.
    Newnham, R.E.: Properties of Materials, Anisotropy, Symmetry, Structure. Oxford University Press, New York (2005)Google Scholar
  47. 47.
    Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  48. 48.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic Constants and Elastic Moduli of Metals and Insulators: Handbook. NaukovaDumka, Kiev (1983)Google Scholar
  49. 49.
    Brazhkin, V.V., Lyapin, A.G., Hemley, R.J.: Harder than diamond: dreams and reality. Philos. Mag. A 82, 231–253 (2002)CrossRefGoogle Scholar
  50. 50.
    Ali, R., Mohammad, S., Ullah, H., Khan, S.A., Uddin, H., Khan, M., Khan, N.U.: The structural, electronic and optical response of IIA–VIA compounds through the modified Becke–Johnson potential. Phys. B 410, 93–98 (2013)CrossRefGoogle Scholar
  51. 51.
    Saum, G.A., Hensley, E.B.: Fundamental optical absorption in the IIA–VIB compounds. Phys. Rev. 113, 1019–1022 (1959)CrossRefGoogle Scholar
  52. 52.
    Zollweg, R.J.: Optical absorption and photoemission of barium and strontium oxides, sulfides, selenides, and tellurides. Phys. Rev. 111, 113–119 (1958)CrossRefGoogle Scholar
  53. 53.
    Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)CrossRefGoogle Scholar
  54. 54.
    Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)CrossRefGoogle Scholar
  55. 55.
    Kaneko, Y., Morimoto, K., Koda, T.: Optical properties of alkaline-earth chalcogenides. II. Vacuum ultraviolet reflection spectra in the synchrotron radiation region of 4–40 eV. J. Phys. Soc. Jpn. 52, 4385–4396 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Etudes Physico-ChimiquesUniversité de SaïdaSidonAlgeria
  2. 2.Laboratoire de Technologies des CommunicationsUniversité de SaïdaSidonAlgeria
  3. 3.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité de Sidi-Bel-AbbèsSidi-Bel-AbbèsAlgeria

Personalised recommendations