Advertisement

First principles study of structural and electronic properties of BNNTs

  • Tayebeh Movlarooy
  • Babak Minaie
Article
  • 66 Downloads

Abstract

In this article the electronic and structural properties of single-walled boron nitride (BN) nanotubes with a diameter range of 4–22 Å have been investigated using the generalized gradient approximation with both Perdew, Burke and Ernzerhof (PBE) and Becke–Lee–Yang–Parr (BLYP) functionals based on density functional theory. The variation of radial distribution, bond length, lattice constant, density of states, buckling separation, total energies and the electronic band gap of BN nanotubes have been studied in terms of the diameter of the nanotube. Our results revealed a correlation between the buckling and band gap: the higher the buckling, the lower the band gap, and by decreasing the tube diameter, the buckling separation increases. It is revealed that for both armchair and zigzag boron nitride nanotubes (BNNT) the value of the band gap increases by increasing the nanotube diameter. Moreover, it is concluded that for small BN nanotubes by reducing the radius, the band gap of the armchair nanotube remains almost constant, while the band gap of the zigzag nanotubes has a rapidly decreasing trend. The value of band gap obtained by the BLYP hybrid functional is more accurate than the PBE functional. The PDOS calculations revealed that the VBM comes from the N 2p orbitals, while the CBM is ruled by the B 2p orbitals. According to the obtained results, BNNTs are suggested as good materials for applications in the nanoscale optoelectronic devices.

Keywords

BN nanotube Band gap DFT Electronic properties 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vandenberghe, W.G., Fischetti, M.V.: Imperfect two-dimensional topological insulator field-effect transistors. Nat. Commun. 8, 14184 (2017)CrossRefGoogle Scholar
  2. 2.
    Sun, M., Ren, Q., Zhao, Y., Chou, J.P., Yu, J., Tang, W.: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study. Carbon 120, 265–273 (2017)CrossRefGoogle Scholar
  3. 3.
    Sun, M., Chou, J.P., Ren, Q., Zhao, Y., Yu, J., Tang, W.: Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett. 110(17), 173105 (2017)CrossRefGoogle Scholar
  4. 4.
    Sun, M., Chou, J.P., Yu, J., Tang, W.: Effects of structural imperfection on the electronic properties of graphene/WSe 2 heterostructures. J. Mater. Chem. C 5(39), 10383–10390 (2017)CrossRefGoogle Scholar
  5. 5.
    Tang, W., Sun, M., Yu, J., Chou, J.P.: Magnetism in non-metal atoms adsorbed graphene-like gallium nitride monolayers. Appl. Surf. Sci. 427, 609–612 (2018)CrossRefGoogle Scholar
  6. 6.
    Sun, M., Chou, J.P., Zhao, Y., Yu, J., Tang, W.: Weak C–H··· F–C hydrogen bonds make a big difference in graphane/fluorographane and fluorographene/fluorographane bilayers. Phys. Chem. Chem. Phys. 19(41), 28127–28132 (2017)CrossRefGoogle Scholar
  7. 7.
    Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Boosting the on-current of an-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 104(6), 064514 (2008)CrossRefGoogle Scholar
  8. 8.
    Sorée, B., Magnus, W., Vandenberghe, W.: Low-field mobility in ultrathin silicon nanowire junctionless transistors. Appl. Phys. Lett. 99(23), 233509 (2011)CrossRefGoogle Scholar
  9. 9.
    Cui, Z., Ke, X., Li, E., Liu, T.: Electronic and optical properties of titanium-doped GaN nanowires. Mater. Des. 96, 409–415 (2016)CrossRefGoogle Scholar
  10. 10.
    Movlarooy, T.: Transition metals doped and encapsulated ZnO nanotubes: good materials for the spintronic applications. J. Magn. Magn. Mater. 441, 139–148 (2017)CrossRefGoogle Scholar
  11. 11.
    Movlarooy, T., Kompany, A., Hosseini, S.M., Shahtahmasebi, N.: Optical absorption and electron energy loss spectra of single-walled carbon nanotubes. Comput. Mater. Sci. 49(3), 450–456 (2010)CrossRefGoogle Scholar
  12. 12.
    Movlarooy, T., Hosseini, S.M., Kompany, A., Shahtahmasebi, N.: Ab initio calculations of optical spectra of a chiral (4, 1) carbon nanotube. Phys. Status Solidi (b) 247(7), 1814–1821 (2010)CrossRefGoogle Scholar
  13. 13.
    Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)CrossRefGoogle Scholar
  14. 14.
    Movlarooy, T., Hosseini, S.M., Kompany, A., Shahtahmasebi, N.: Ab initio calculations of electronic structure and optical spectra of (13-0) carbon nanotube. Int. J. Nanosci. 10(04n05), 587–590 (2011)CrossRefGoogle Scholar
  15. 15.
    Movlarooy, T.: The effect of intraband transitions on the optical spectra of metallic carbon nanotubes. Chin. Phys. Lett. 30(7), 077301 (2013)CrossRefGoogle Scholar
  16. 16.
    Ghajari, N., Kompany, A., Movlarooy, T., Roozban, F., Majidiyan, M.: Synthesis, experimental and theoretical investigations of Zn1–xCuxO nanopowders. J. Magn. Magn. Mater. 325, 42–46 (2013)CrossRefGoogle Scholar
  17. 17.
    Chen, J., Zhang, G., Li, B.: Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett. 10(10), 3978–3983 (2010)CrossRefGoogle Scholar
  18. 18.
    Movlarooy, T.: Study of quantum confinement effects in ZnO nanostructures. Mater. Res. Express 5(3), 035032 (2018)CrossRefGoogle Scholar
  19. 19.
    Movlarooy, T.: Polythiophene encapsulated inside (13, 0) CNT: a nano-hybrid system. Chin. Phys. B 23(6), 066201 (2014)CrossRefGoogle Scholar
  20. 20.
    Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49(7), 5081 (1994)CrossRefGoogle Scholar
  21. 21.
    Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. EPL (Europhys. Lett.) 28(5), 335 (1994)CrossRefGoogle Scholar
  22. 22.
    Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Boron nitride nanotubes. Science 269(5226), 966–967 (1995)CrossRefGoogle Scholar
  23. 23.
    Lijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991)CrossRefGoogle Scholar
  24. 24.
    Hernandez, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and B × C y N z composite nanotubes. Phys. Rev. Lett. 80(20), 4502 (1998)CrossRefGoogle Scholar
  25. 25.
    Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C 2 F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64(23), 235406 (2001)CrossRefGoogle Scholar
  26. 26.
    Ma, R., Bando, Y., Zhu, H., Sato, T., Xu, C., Wu, D.: Hydrogen uptake in boron nitride nanotubes at room temperature. J. Am. Chem. Soc. 124(26), 7672–7673 (2002)CrossRefGoogle Scholar
  27. 27.
    Movlarooy, T., Fadradi, M.A.: Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing. Chem. Phys. Lett. 700, 7–14 (2018)CrossRefGoogle Scholar
  28. 28.
    Fadradi, M.A., Movlarooy, T.: Ab initio study of adsorption of CO on BNNTs: for gas nanosensor applications. Mater. Chem. Phys. 215, 360–367 (2018)CrossRefGoogle Scholar
  29. 29.
    Huang, Q., Bando, Y., Xu, X., Nishimura, T., Zhi, C., Tang, C., Golberg, D.: Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology 18(48), 485706 (2007)CrossRefGoogle Scholar
  30. 30.
    Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49(7), 5081 (1994)CrossRefGoogle Scholar
  31. 31.
    Fakhrabad, D.V., Movlarooy, T., Shahtahmassebi, N.: Density functional theory study of ultrasmall diameter (2, 2) boron nitride, silicon carbide, and carbon nanotubes. Phys. Status Solidi (b) 249(5), 1027–1032 (2012)CrossRefGoogle Scholar
  32. 32.
    Xiang, H.J., Yang, J., Hou, J.G., Zhu, Q.: First-principles study of small-radius single-walled BN nanotubes. Phys. Rev. B 68(3), 035427 (2003)CrossRefGoogle Scholar
  33. 33.
    Jhi, S.H., Roundy, D.J., Louie, S.G., Cohen, M.L.: Formation and electronic properties of double-walled boron nitride nanotubes. Solid State Commun. 134(6), 397–402 (2005)CrossRefGoogle Scholar
  34. 34.
    Okada, S., Saito, S., Oshiyama, A.: Interwall interaction and electronic structure of double-walled BN nanotubes. Phys. Rev. B 65(16), 165410 (2002)CrossRefGoogle Scholar
  35. 35.
    Fiolhais, C., Nogueira, F., Marques, M.A. (eds.): A primer in density functional theory, vol. 620. Springer, Berlin (2003)Google Scholar
  36. 36.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002)CrossRefGoogle Scholar
  37. 37.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRefGoogle Scholar
  38. 38.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)CrossRefGoogle Scholar
  39. 39.
    Liu, H., Zhou, G., Yan, Q., Wu, J., Gu, B.L., Duan, W., Zhao, D.L.: Structural and electronic properties of fluorinated double-walled boron nitride nanotubes: effect of interwall interaction. Phys. Rev. B 75(12), 125410 (2007)CrossRefGoogle Scholar
  40. 40.
    Jia, J.F., Wu, H.S., Jiao, H.: The structure and electronic property of BN nanotube. Phys. B 381(1–2), 90–95 (2006)CrossRefGoogle Scholar
  41. 41.
    Zhang, D., Zhang, R.Q.: Theoretical prediction on aluminum nitride nanotubes. Chem. Phys. Lett. 371(3–4), 426–432 (2003)CrossRefGoogle Scholar
  42. 42.
    Evarestov, R.A., Zhukovskii, Y.F., Bandura, A.V., Piskunov, S.: Symmetry and models of single-wall BN and TiO2 nanotubes with hexagonal morphology. J. Phys. Chem. C 114(49), 21061–21069 (2010)CrossRefGoogle Scholar
  43. 43.
    Mi, S., Hee, Y., Gyoo, Y., Lee, C.J.: Electronic structures of GaN nanotubes. J. Korean Phys. Soc. 34, 257 (1999)Google Scholar
  44. 44.
    Sodre, J.M., Longo, E., Taft, C.A., Martins, J.B., dos Santos, J.D.: Electronic structure of GaN nanotubes. C. R. Chim. 20, 190 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Physics and Nuclear EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations