Journal of Computational Electronics

, Volume 17, Issue 4, pp 1505–1514 | Cite as

Theoretical analysis of band alignment and charge carriers migration in mixed-phase TiO2 systems

  • Cecilia I. N. Morgade
  • Norberto J. Castellani
  • Gabriela F. CabezaEmail author


Photocatalysts based on mixtures of rutile and anatase forms of titania usually show a better catalytic performance than each individual component. In order to understand this behavior, several experimental and theoretical approaches have been proposed in the past, looking for an adequate reference frame for aligning energy bands, and arriving sometimes to opposite results. In this work, the theoretical results obtained for the band alignment applying a modified common anion rule for different possibilities of mixed-phase (anatase–rutile) interaction are presented. According to our results, mixed-phase systems involve the transfer of electrons from rutile to anatase and holes from anatase to rutile. This analysis would be applicable to real samples of mixed phase of titania with large particle size. However, for heterogeneous size particulate systems, it is not only necessary to consider the alignment of bands of the bulk system, but also those of the corresponding surfaces. In keeping with the analysis performed, the best mixed systems are those composed by large particles of both polymorphs or by small particles of anatase dissolved in rutile. Our results could explain the disagreement found in the literature regarding the experimental works.


Mixed-phase titania Band alignment DFT Common anion rule Heterojunction 



The authors thank the financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional del Sur (UNS) (PGI: 24/F068).


  1. 1.
    Liu, G., Wang, L., Yang, H., Cheng, H., Qing, G.: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831–843 (2010)CrossRefGoogle Scholar
  2. 2.
    Stafford, U., Gray, K., Kamat, P., Varma, A.: An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface. Chem. Phys. Lett. 205, 55–61 (1993)CrossRefGoogle Scholar
  3. 3.
    Ohno, T., Tokieda, K., Matsumura, M.: Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 203, 82–86 (2001)CrossRefGoogle Scholar
  4. 4.
    Ohno, T., Tokieda, K., Higashida, S., Matsumara, M.: Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A Gen. 244, 383–391 (2003)CrossRefGoogle Scholar
  5. 5.
    Leung, D., Fu, X., Wang, C., Ni, M., Leung, M., Wang, X., Fu, X.: Hydrogen production over titania-based photocatalysts. Chem. Sus. Chem. 3, 681–694 (2010)CrossRefGoogle Scholar
  6. 6.
    Yu, E.T., Mc Caldin, J.O., Mc Gill, T.C.: Band offsets in semiconductor heterojunctions. Solid State Phys. 46, 1–146 (1992)CrossRefGoogle Scholar
  7. 7.
    Milnes, A.G., Feucht, D.L.: Heterojunctions and Metal-Semiconductor Junctions. Academic Press, New York (1972)Google Scholar
  8. 8.
    Mc Caldin, J.O., Mc Gill, T.C., Mead, C.A.: Correlation for III-V and II-VI semiconductors of the Au Schottky barrier energy with anion electronegativity. Phys. Rev. Lett. 36, 56 (1976)CrossRefGoogle Scholar
  9. 9.
    Harrison, W.A., Tersoff, J.: Tight-binding theory of heterojunction band lineups and interface dipoles. J. Vac. Sci. Technol. B 4, 1068–1973 (1986)CrossRefGoogle Scholar
  10. 10.
    Klein, A.: Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule. Thin Solid Films 520, 3721–3728 (2012)CrossRefGoogle Scholar
  11. 11.
    Wei, S.H., Zunger, A.: Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals. Appl. Phys. Lett. 72, 2011–2013 (1998)CrossRefGoogle Scholar
  12. 12.
    Späth, B., Fritsche, J., Säuberlich, F., Klein, A., Jaegermann, W.: Studies of sputtered ZnTe films as interlayer for the CdTe thin film solar cell. Thin Solid Films 480–481, 204 (2005)CrossRefGoogle Scholar
  13. 13.
    Tersoff, J., Harrison, W.A.: Transition-metal impurities in semiconductors—their connection with band lineups and Schottky barriers. Phys. Rev. Lett. 58, 2367–2370 (1987)CrossRefGoogle Scholar
  14. 14.
    Pfeifer, V., Erhart, P., Li, S., Rachut, K., Morasch, J., Bröntz, J., Reckers, P., Mayer, T., Rühle, S., Zaban, A., Seró, I., Bisquert, J., Jaegermenn, W., Klein, A.: Energy band alignment between anatase and rutile TiO2. J. Phys. Chem. Lett. 4, 4182–4187 (2013)CrossRefGoogle Scholar
  15. 15.
    Ju, M.-G., Sun, G., Wang, J., Meng, Q., Liang, W.: Origin of high photocatalytic properties in the mixed-phase TiO2: a first-principles theoretical study. Appl. Mater. Interf. 6, 12885–12892 (2014)CrossRefGoogle Scholar
  16. 16.
    Deák, P., Aradi, B., Frauenheim, T.: Band lineup and charge carrier separation in mixed rutile-anatase systems. J. Phys. Chem. C 115, 3443–3446 (2011)CrossRefGoogle Scholar
  17. 17.
    Scanlon, D., Dunnill, Ch., Buckeridge, J., Shevlin, S., Logsdail, A., Woodley, S., Catlow, C., Powell, M., Palgrave, R., Parkin, I., Watson, G., Keal, T., Sherwood, P., Walsh, A., Sokol, A.: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013)CrossRefGoogle Scholar
  18. 18.
    Hurum, D.C., Gray, K.A., Rajh, T., Thurnauer, M.C.: Recombination pathways in the degussa P25 formulation of TiO2: surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005)CrossRefGoogle Scholar
  19. 19.
    Shen, S., Wang, X., Chen, T., Feng, Z., Li, C.: Transfer of photoinduced electrons in anatase-rutile TiO2 determined by time-resolved mid-infrared spectroscopy. J. Phys. Chem. C 118, 12661–12668 (2014)CrossRefGoogle Scholar
  20. 20.
    Kang, J., Wu, F., Li, S., Xia, J., Li, J.: Calculating band alignment between materials with different structures: the case of anatase and rutile titanium dioxide. J. Phys. Chem. C 116, 20765–20768 (2012)CrossRefGoogle Scholar
  21. 21.
    Bickley, R., Gonzalez, Carreno J., Lees, S., Palmisano, L., Tilley, R.: A structural investigation of titanium dioxide photocatalysts. Solid State Chem. 92, 178–190 (1991)CrossRefGoogle Scholar
  22. 22.
    Kresse, G.: Furthmüller: efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J Phys. Rev. B 54, 11169–11186 (1996)CrossRefGoogle Scholar
  23. 23.
    Dudarev, S., Botton, G., Savrasov, S., Humphreys, C., Sutton, A.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998)CrossRefGoogle Scholar
  24. 24.
    Muscat, J., Swamy, V., Harrison, N.M.: First-principles calculations of the phase stability of TiO2. Phys. Rev. B 65, 224112–224115 (2002)CrossRefGoogle Scholar
  25. 25.
    Morgade, C.I.N., Vignatti, ChI, Avila, M.S., Cabeza, G.F.: Theoretical and experimental analysis of the oxidation of CO on Pt catalysts supported on modified TiO2(101). J. Mol. Catal. A Chem. 407, 102–112 (2015)CrossRefGoogle Scholar
  26. 26.
    Morgade, C.I.N., Cabeza, G.F.: Synergetic interplay between metal (Pt) and nonmetal (C) species in codoped TiO2: a DFT+U study. Comput. Mater. Sci. 111, 513–524 (2016)CrossRefGoogle Scholar
  27. 27.
    Blochl, P.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)CrossRefGoogle Scholar
  28. 28.
    Perdew, J.P., Wang, Y.: Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800(R) (1986)CrossRefGoogle Scholar
  29. 29.
    Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989)CrossRefGoogle Scholar
  30. 30.
    Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)Google Scholar
  31. 31.
    Xiong, G., Shao, R., Droubay, T., Joly, A., Beck, K., Chambers, S., Hess, W.: Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv. Funct. Mater. 17, 2133–2138 (2007)CrossRefGoogle Scholar
  32. 32.
    Hurum, D., Agrios, A.G., Gray, K.A.: Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003)CrossRefGoogle Scholar
  33. 33.
    Nosaka, Y., Nosaka, A.: Reconsideration of intrinsic band alignments within anatase and rutile TiO2. J. Phys. Chem. Lett. 7, 431–434 (2016)CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Xu, Q., Feng, Z., Li, M., Li, C.: Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. 47, 1766–1769 (2008)CrossRefGoogle Scholar
  35. 35.
    Zhang, X., Lin, Y., He, D., Zhang, J., Fan, Z., Xie, T.: Interface junction at anatase/rutile in mixed-phase TiO2: formation and photo-generated charge carriers properties. Chem. Phys. Lett. 504, 71–75 (2011)CrossRefGoogle Scholar
  36. 36.
    Cheng, H., Selloni, A.: Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 79, 092101–092104 (2009)CrossRefGoogle Scholar
  37. 37.
    Zawadzki, P.: Absorption spectra of trapped holes in anatase TiO2. J. Phys. Chem. C 117, 8647–8651 (2013)CrossRefGoogle Scholar
  38. 38.
    Mi, Y., Weng, Y.: Band alignment and controllable electron migration between rutile and anatase TiO2. Sci. Rep. 5, 11482 (2015)CrossRefGoogle Scholar
  39. 39.
    Colbeau-Justin, C., Kunst, M., Huguenin, D.: Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption. J. Mater. Sci. 38, 2429–2437 (2003)CrossRefGoogle Scholar
  40. 40.
    Togo, A., Fumiyasu, O., Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B. 78, 134106–134109 (2008)CrossRefGoogle Scholar
  41. 41.
    Shomate, C.H.: Heat capacities at low temperatures of titanium dioxide (rutile and anatase). J. Am. Chem. Soc. 69, 218–219 (1947)CrossRefGoogle Scholar
  42. 42.
    Shen, Q., Katayama, K., Sawada, T., Yamaguchi, M., Kumagai, Y., Toyoda, T.: Photoexcited hole dynamics in TiO2 nanocrystalline films characterized using a lens-free heterodyne detection transient grating technique. Chem. Phys. Lett. 419, 464–468 (2006)CrossRefGoogle Scholar
  43. 43.
    Kavan, L., Gratzel, M., Gillert, S., Klemenz, C., Scheel, H.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 115, 6716–6723 (1996)CrossRefGoogle Scholar
  44. 44.
    Zhang, J., Zhou, P., Liu, J., Yu, J.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20385 (2014)CrossRefGoogle Scholar
  45. 45.
    Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M.: Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Sci. Rep. 4, 4043 (2014)CrossRefGoogle Scholar
  46. 46.
    Li, G., Chen, L., Graham, M.E., Gray, K.A.: A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: the importance of the solid–solid interface. J. Mol. Catal. A Chem. 275, 30–35 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia I. N. Morgade
    • 1
    • 2
  • Norberto J. Castellani
    • 1
  • Gabriela F. Cabeza
    • 1
    Email author
  1. 1.Grupo de Materiales y Sistemas Catalíticos, Departamento de Física, Instituto de Física del Sur (IFISUR), CONICETUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  2. 2.Universidad Tecnológica NacionalBahía BlancaArgentina

Personalised recommendations