Journal of Computational Electronics

, Volume 17, Issue 4, pp 1578–1583 | Cite as

Updated structure of vertical double-diffused MOSFETs for irradiation hardening against single events

  • Zhaohuan TangEmail author
  • Xingji Li
  • Kaizhou Tan
  • Chaoming Liu
  • Xinghua Fu


The gate oxide layer and parasitic bipolar junction transistor are inherent elements of vertical double-diffused power metal–oxide–semiconductor field-effect transistors (MOSFETs). Single-event gate rupture (SEGR) and single-event burnout (SEB) may be triggered by penetration of energetic ions through sensitive regions of such MOSFET devices when used in space environments. Based on the recombination mechanism in a heavily doped P+ buried layer and the higher breakdown voltage when using a thick oxide layer, a new structure for power MOSFETs that are irradiation hardened against SEGR and SEB was developed in this work, based on three typical characteristics: an N+ buried layer, a P+ buried layer, and a thick oxide above the neck. The results reveal that the safe operation region of such an N-channel power MOSFET in a single-event irradiation environment is enhanced by 300 % for a linear energy transfer value of 98 MeV cm2/mg. Such structures could be widely used when designing single-event irradiation-hardened power MOSFETs.


Power MOSFETs Irradiation hardened Single-event burnout Single-event gate rupture Recombination mechanism 



Supported by the National Defense Science and Technology Key Lab Open Foundation for Space Materials Behavior and Evaluation of China (no. 61429100306) and the Ministry of Education Open Foundation for Semiconductor Power Device Reliability of China (010201).


  1. 1.
    Tang, Z., Fu, X., Yang, F., et al.: SEGR- and SEB-hardened structure with DSPSOI in power MOSFETs. J. Semicond. 38(12), 124006-1–124006-5 (2017)Google Scholar
  2. 2.
    Titus, J.L.: An updated perspective of singe event gate rupture and single event burnout in power MOSFETs. IEEE Trans. Nucl. Sci. 60(3), 1912–1928 (2013)CrossRefGoogle Scholar
  3. 3.
    Johnson, G.H., Galloway, K.F., Schrimpf, R.D., et al.: A physical interpretation for the single-event-gate-rupture cross-section of N-channel power MOSFETs. IEEE Trans. Nucl. Sci. 43(6), 2932–2937 (1996)CrossRefGoogle Scholar
  4. 4.
    Liu, S., Titus, J.L., Max, Z., et al.: Worst-case test conditions of SEGR for power DMOSFETs. IEEE Trans. Nucl. Sci. 57(1), 279–287 (2010)CrossRefGoogle Scholar
  5. 5.
    Allenspach, M., Brews, J.R., Mouret, I., et al.: Evaluation of SEGR threshold in power MOSFETs. IEEE Trans. Nucl. Sci. 41(6), 2160–2166 (1994)CrossRefGoogle Scholar
  6. 6.
    Liu, S., Titus, J.L., Boden, M.: Effect of buffer layer on single event burnout of power DMOSFETs. IEEE Trans. Nucl. Sci. 54(6), 2554–2560 (2007)CrossRefGoogle Scholar
  7. 7.
    Dunitru, S., Marc, H.V., Eric, K.: Pseudo self aligned radhard MOSFET and process of manufacture. US Patent 20,130,181,280 A1 (2013)Google Scholar
  8. 8.
    Lu, J., Liu, H., Cai, X., et al.: Single-event burnout hardening of planar power MOSFET with partially widened trench source. J. Semicond. 39(3), 034003-1–034003-6 (2018)CrossRefGoogle Scholar
  9. 9.
    Porzio, A., Velardi, F., Busatto, G., et al.: A 3-D simulation study about single event gate damage in medium voltage power MOSFET. In: 2008 European Conference on Radiation and Its Effects on Components and Systems (RADECS), pp. 209–212 (2008)Google Scholar
  10. 10.
    ATHENA User Manual: Silvaco International. ATHENA User Manual, Santa Clara (2008)Google Scholar
  11. 11.
    ATLAS User Manual: Silvaco International. ATLAS User Manual, Santa Clara (2013)Google Scholar
  12. 12.
    Narayanan, M.R., Al-Nashash, H., Pal, D., et al.: Thermal model of MOSFET with SELBOX structure. J. Comput. Electron. 12(4), 803–811 (2013)CrossRefGoogle Scholar
  13. 13.
    Johnson, G.H., Schrimpf, R.D., Galloway, K.F.: Temperature dependence of single-event burnout in N-channel power MOSFETs. IEEE Trans. Nucl. Sci. 39(6), 1605–1612 (1992)CrossRefGoogle Scholar
  14. 14.
    Haran, A., Barak, J., Davide, D., et al.: Mapping of single event burnout in power MOSFETs. IEEE Trans. Nucl. Sci. 54(6), 2488–2494 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina
  2. 2.Science and Technology on Analog Integrated Circuit LaboratoryChongqingChina
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations