Journal of Computational Electronics

, Volume 17, Issue 3, pp 1382–1398 | Cite as

Digital configuration of astrocyte stimulation as a new technique to strengthen the impaired astrocytes in the tripartite synapse network

  • Masoud Amiri
  • Soheila NazariEmail author
  • Mahyar Janahmadi


Recent findings have proven that glial cells and particularly astrocytes are responsible for some important roles in the central nervous system. Due to laboratory technical difficulties in the examination of astrocyte’s functions in information processing of neural systems, computational modeling is a suitable approach. In this paper, the process of synchronization in neuronal fluctuations in view of the role of astrocytes was investigated. Then, due to the destructive effects of hyper-synchronization, based on the dynamical model of the astrocyte biophysical model, a new bio-inspired stimulator was introduced. Many patients suffer from astrocyte-related epilepsy; however, drugs that affect astrocytes are not available currently. Therefore, here a new concept of “stimulating the impaired astrocytes to compensate for their malfunction” was introduced. This new mechanism was proposed to stimulate the impaired astrocytes in a population of tripartite synapses for restoration of the normal neural oscillations. Finally, a closed-loop interaction between the proposed stimulating method and a population of tripartite synapses was implemented on a Zynq system-on-chip (SoC) platform from Xilinx, because the Zynq SoC is an appropriate control platform in the implementation of the proposed architecture. Stimulator hardware design was optimized to attain a very low power consumption platform in real-time application. Results of hardware and software simulations confirmed that hyper-synchronization of a neuronal population caused by astrocytes dysfunction could be compensated by the bio-inspired stimulator.


Tripartite synapse Impaired astrocyte Astrocytic stimulation Synchronization System on chip 



We thank Dr. Karim Faez for his assistance with particular technique and comments that greatly improved the quality of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte–neuron interplay in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)CrossRefGoogle Scholar
  2. 2.
    Linne, M.L., Jalonen, T.O.: Astrocyte–neuron interactions: from experimental research-based models to translational medicine. Prog. Mol. Biol. Transl. Sci. 123, 191 (2014)CrossRefGoogle Scholar
  3. 3.
    Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292, 60–70 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Halassa, M.M., Fellin, T., Haydon, P.G.: Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4), 343–346 (2009)CrossRefGoogle Scholar
  5. 5.
    Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M.: Astrocyte–neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J. Comput. Neurosci. 34(3), 489–504 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jiruska, P., de Curtis, M., Jefferys, J.G., Schevon, C.A., Schiff, S.J., Schindler, K.: Synchronization and desynchronization in epilepsy: controversies and hypotheses. J. Physiol. 591(4), 787–797 (2013)CrossRefGoogle Scholar
  7. 7.
    Amiri, M., Montaseri, G., Bahrami, F.: On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol. Cybern. 105(2), 153–166 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ji, Z.G., Wang, H.: Optogenetic control of astrocytes: Is it possible to treat astrocyte-related epilepsy? Brain Res. Bull. 110, 20–25 (2015)CrossRefGoogle Scholar
  9. 9.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Perea, G., Araque, A.: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25(9), 2192–2203 (2005)CrossRefGoogle Scholar
  11. 11.
    Hung, J., Colicos, M.A.: Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS ONE 3(11), 1–10 (2008)CrossRefGoogle Scholar
  12. 12.
    Santello, M., Volterra, A.: Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158(1), 253–259 (2009)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Rinzel, J.: Equations for inositol-triphosphate receptor-mediated calcium oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994)CrossRefGoogle Scholar
  14. 14.
    Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83(4), 046207-1 (2011)CrossRefGoogle Scholar
  15. 15.
    Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002)CrossRefGoogle Scholar
  16. 16.
    Mazzoni, A., Panzeri, S., Logothetis, N.K., Brunel, N.: Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput. Biol. 4(12), 1–20 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kudela, P., Franaszczuk, P.J., Bergey, G.K.: Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biol. Cybern. 88(4), 276–285 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Clarke, L.E., Barres, B.A.: Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14(5), 311–321 (2013)CrossRefGoogle Scholar
  19. 19.
    Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R.: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4), 691–705 (2012)CrossRefGoogle Scholar
  20. 20.
    Verkhratsky, A., Nedergaard, M.: Astroglial cradle in the life of the synapse. Philos. Trans. R. Soc. B Biol. Sci. 369(1654), 1–9 (2014)CrossRefGoogle Scholar
  21. 21.
    Henneberger, C., Papouin, T., Oliet, S.H., Rusakov, D.A.: Long-term potentiation depends on release of d-serine from astrocytes. Nature 463, 232–236 (2010)CrossRefGoogle Scholar
  22. 22.
    Halassa, M.M., Florian, C., Fellin, T., Munoz, J.R., Lee, S.Y., Abel, T., Haydon, P.G., Frank, M.G.: Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61, 213–219 (2009)CrossRefGoogle Scholar
  23. 23.
    Seifert, G., Steinhäuser, C.: Neuron–astrocyte signaling and epilepsy. Exp. Neurol. 244, 4–10 (2013)CrossRefGoogle Scholar
  24. 24.
    Amiri, M., Bahrami, F., Janahmadi, M.: Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J. Comput. Neurosci. 33(2), 285–299 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Amiri, M., Bahrami, F., Janahmadi, M.: On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72(2), 172–180 (2012)CrossRefzbMATHGoogle Scholar
  26. 26.
    Montaseri, G., Yazdanpanah, M.J., Amiri, M.: Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Nature and Biologically Inspired Computing (NaBIC), pp. 195–200 (2011)Google Scholar
  27. 27.
    Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)CrossRefGoogle Scholar
  28. 28.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  29. 29.
    Priori, A., Foffani, G., Rossi, L., Marceglia, S.: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245, 77–86 (2013)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Crockett, L.H., Elliot, R.A., Enderwitz, M.A., Stewart, R.W.: The Zynq Book Tutorials. University of Strathclyde, Glasgow (2014)Google Scholar
  32. 32.
    Raiesdana, S., Firoozabadi, S.M.P., Gholpayegani, S.M.H.: An evolutionary network model of epileptic phenomena. Neurocomputing 74(4), 617–628 (2011)CrossRefGoogle Scholar
  33. 33.
    Luo, M., Wu, Y., Peng, J.: Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biol. Cybern. 101(3), 241–246 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Batista, C.A.S., Lopes, S.R., Viana, R.L., Batista, A.M.: Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw. 23(1), 114–124 (2010)CrossRefGoogle Scholar
  35. 35.
    Tass, P.A.: Effective desynchronization with bipolar double-pulse stimulation. Phys. Rev. E 66(3), 0362261 (2002)CrossRefGoogle Scholar
  36. 36.
    Tass, P.A.: A model of desynchronization deep brain stimulation with a demand-controlled coordinated reset of neural subpopulation. Biol. Cybern. 89, 81–88 (2003)CrossRefzbMATHGoogle Scholar
  37. 37.
    Rosenblum, M.G., Pikovsky, A.S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92(11), 114102-1 (2004)CrossRefGoogle Scholar
  38. 38.
    Popovych, O.V., Tass, P.A.: Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback. Phys. Rev. E 82(2), 026204 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Popovych, O.V., Hauptmann, C., Tass, P.A.: Impact of nonlinear delayed feedback on synchronized oscillators. J. Biol. Phys. 34(3–4), 267–279 (2008)CrossRefGoogle Scholar
  40. 40.
    Tukhlina, N., Rosenblum, M.: Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. J. Biol. Phys. 34(3–4), 301–314 (2008)CrossRefGoogle Scholar
  41. 41.
    Santello, M., Calì, C., Bezzi, P.: Gliotransmission and the tripartite synapse. Synaptic Plast. 970, 307–331 (2012)CrossRefGoogle Scholar
  42. 42.
    Amiri, M., Amiri, M., Nazari, S., Faez, K.: A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network. J. Theor. Biol. 410, 107–118 (2016)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Masoud Amiri
    • 1
  • Soheila Nazari
    • 2
    Email author
  • Mahyar Janahmadi
    • 3
  1. 1.Nano Drug Delivery Research CenterKermanshah University of Medical SciencesKermanshahIran
  2. 2.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Neuroscience Research Center, Department of Physiology, Medical SchoolShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations