Journal of Computational Electronics

, Volume 17, Issue 3, pp 909–919 | Cite as

Theoretical investigation of electronic performance, half-metallicity, and magnetic properties of Cr-substituted BaTe

  • Khelifa BerriahEmail author
  • Bendouma DoumiEmail author
  • Allel MokaddemEmail author
  • Mohammed Elkeurti
  • Adlane Sayede
  • Abdelkader Tadjer
  • João Pedro Araújo


We have investigated the structural, electronic, and ferromagnetic properties of chromium (Cr)-doped rocksalt BaTe (\(\hbox {Ba}_{1-x}\hbox {Cr}_{x}\hbox {Te}\)) compounds with compositions \(x = 0.25\), 0.5, and 0.75, based on density functional theory with generalized gradient approximation of Wu–Cohen (GGA-WC) and Tran–Blaha-modified Becke–Johnson (TB-mBJ) potential using the WIEN2k package. We found that the electronic structure showed half-metallic ferromagnetic character with spin polarization of 100 % around the Fermi level. In addition, the minority-spin bands depicted a half-metallic ferromagnetic (HMF) gap and half-metallic (HM) gap. The improved HMF and HM gaps found with the TB-mBJ potential are higher than with the GGA-WC approximation. These large HM gaps make \(\hbox {Ba}_{1-x} \hbox {Cr}_{x}\hbox {Te}\) compounds promising candidates for use in spintronics applications.


Cr-substituted BaTe TB-mBJ approach Half-metallic ferromagnetism Electronic properties 


  1. 1.
    Matsukura, F., Tokura, Y., Ohno, H.: Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015)CrossRefGoogle Scholar
  2. 2.
    Nie, T., Tang, J., Wang, K.L.: Quest for high-Curie temperature \(\text{ Mn }_{x}\text{ Ge }_{1-x~}\)diluted magnetic semiconductors for room-temperature spintronics applications. J. Cryst. Growth 425, 279–282 (2015)CrossRefGoogle Scholar
  3. 3.
    Tang, J., Nie, T., Wang, K.L.: Spin transport in Ge nanowires for diluted magnetic semiconductor-based nonvolatile transpinor. ECS Trans. 64(6), 613–623 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, K.L., Zhao, Z., Khitun, A.: Spintronics for nanoelectronics and nanosystems. Thin Solid Films 517, 184–190 (2008)CrossRefGoogle Scholar
  5. 5.
    Yu, Y.B., Thompson, S.M.: Spintonic Materials and Technology. Taylor & Francis, Boca Raton (2007)Google Scholar
  6. 6.
    Sato, K., Katayama-Yoshida, H.: Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 40, L485–L487 (2001)CrossRefGoogle Scholar
  7. 7.
    Wu, S.Y., Liu, H.X., Gu, L., Singh, R.K., Budd, L., van Schilfgaarde, M., McCartney, M.R., Smith, D.J., Newman, N.: Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films. Appl. Phys. Lett. 82, 3047 (2003)CrossRefGoogle Scholar
  8. 8.
    Doumi, B., Tadjer, A., Dahmane, F., Mesri, D., Aourag, H.: Investigations of structural, electronic, and half-metallic ferromagnetic properties in \((\text{ Al, } \text{ Ga, } \text{ In })_{1-x}\text{ M }_{x}\)N (M = Fe, Mn) diluted magnetic semiconductors. J. Supercond. Nov. Magn. 26, 515 (2013)CrossRefGoogle Scholar
  9. 9.
    Doumi, B., Mokaddem, A., Temimi, L., Beldjoudi, N., Elkeurti, M., Dahmane, F., Sayede, A., Tadjer, A., Ishak-Boushaki, M.: First-principle investigation of half-metallic ferromagnetism in octahedrally bonded Cr-doped rock-salt SrS, SrSe, and SrTe Eur. Phys. J. B 88, 93 (2015)Google Scholar
  10. 10.
    Berber, M., Doumi, B., Mokaddem, A., Mogulkoc, Y., Sayede, A., Tadjer, A.: Investigation of electronic structure and half-metallic ferromagnetic behavior with large half-metallic gap in \(\text{ Sr }_{1-x}\text{ V }_{x}\)O. J. Comput. Electron. 16, 542–547 (2017)CrossRefGoogle Scholar
  11. 11.
    Bhardwaj, P., Singh, S.: Pressure induced structural phase transitions-A review. Cent. Eur. J. Chem. 10(5), 1391–1422 (2012)Google Scholar
  12. 12.
    Heng, K.L., Chua, S.J., Wu, P.: Prediction of semiconductor material properties by the properties of their constituent chemical elements. Chem. Mater. 12, 1648–1653 (2000)CrossRefGoogle Scholar
  13. 13.
    Tuncel, E., Colakoglu, K., Deligoz, E., Ciftci, Y.O.: A first-principles study on the structural, elastic, vibrational, and thermodynamical properties of BaX (X = S, Se, and Te). J. Phys. Chem. Solids 70, 371–378 (2009)CrossRefGoogle Scholar
  14. 14.
    Feng, Z., Hu, H., Lv, Z., Cui, S.: First-principles study of electronic and optical properties of BaS, BaSe and BaTe. Cent. Eur. J. Phys. 8(5), 782–788 (2010)CrossRefGoogle Scholar
  15. 15.
    Partin, D.L., Thrush, C.M., Clemens, B.M.: Lead strontium telluride and lead barium telluride grown by molecular-beam epitaxy. J. Vac. Sci. Technol., B 5, 686–689 (1987)CrossRefGoogle Scholar
  16. 16.
    Weir, S.T., Vohra, Y.K., Ruoff, A.L.: Pressure-induced metallization of BaSe. Phys. Rev. B 35, 874 (1987)CrossRefGoogle Scholar
  17. 17.
    Pandey, R., Sivaraman, S.: Spectroscopic properties of defects in alkaline-earth sulfides. J. Phys. Chem. Solids 52(1), 211–225 (1991)CrossRefGoogle Scholar
  18. 18.
    Lin, G.Q., Gong, H., Wu, P.: Electronic properties of barium chalcogenides from first-principles calculations: Tailoring wide-band-gap II–VI semiconductors. Phys. Rev. B 71, 085203 (2005)CrossRefGoogle Scholar
  19. 19.
    Kholiya, K., Verma, S.: Pressure-induced phase transition and elastic properties of barium chalcogenides. Phase Transit. 84, 67–76 (2011)CrossRefGoogle Scholar
  20. 20.
    Syassen, K., Christensen, N.E., Winzen, H.: Optical response and band-structure calculations of alkaline-earth tellurides under pressure. Phys. Rev. B 35, 4052 (1987)CrossRefGoogle Scholar
  21. 21.
    Pourghazi, A., Dadsetani, M.: Electronic and optical properties of BaTe, BaSe and BaS from first principles. Physica B 370, 35–45 (2005)CrossRefGoogle Scholar
  22. 22.
    Akhtar, M.S., Malik, M.A., Riaz, S., Naseem, S.: Room temperature ferromagnetism and half metallicity in nickel doped ZnS: experimental and DFT studies. Mater. Chem. Phys. 160, 440–446 (2015)CrossRefGoogle Scholar
  23. 23.
    Akhtar, M.S., Malik, M.A., Alghamdi, Y.G., Ahmad, K.S., Riaz, S., Naseem, S.: Chemical bath deposition of Fe-doped ZnS thin films: investigations of their ferromagnetic and half-metallic properties. Mater. Sci. Semicond. Proc. 39, 283–291 (2015)CrossRefGoogle Scholar
  24. 24.
    Tian, J.H., Song, T., Sun, X.W., Wang, T., Jiang, G.: First-principles study on the half-metallic ferromagnetism and optical properties of Fe-doped CdSe and Co-doped CdSe. Supercond. Nov. Magn. 30, 521–528 (2017)CrossRefGoogle Scholar
  25. 25.
    Rabbani, S.F., Banu, I.B.S.: An ab-initio calculation of half-metallic ferromagnetism in vanadium doped ZnS. J. Alloys Compd. 695, 3131–3138 (2017)CrossRefGoogle Scholar
  26. 26.
    Addadi, Z., Doumi, B., Mokaddem, A., Elkeurti, M., Sayede, A., Tadjer, A., Dahmane, F.: Electronic and ferromagnetic properties of 3d(V)-doped (BaS) barium sulfide. J. Supercond. Nov. Magn. 30, 917–923 (2017)CrossRefGoogle Scholar
  27. 27.
    Berber, M., Doumi, B., Mokaddem, A., Mogulkoc, Y., Sayede, A., Tadjer, A.: First-principle predictions of electronic properties and half-metallic ferromagnetism in vanadium-doped rock-salt SrO. J. Electron. Mater. 47, 449–456 (2018)CrossRefGoogle Scholar
  28. 28.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)Google Scholar
  29. 29.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–871 (1964)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–1138 (1965)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)CrossRefGoogle Scholar
  32. 32.
    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  33. 33.
    Koller, D., Tran, F., Blaha, P.: Merits and limits of the modified Becke–Johnson exchange potential. Phys. Rev. B 83, 195134 (2011)CrossRefGoogle Scholar
  34. 34.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillonin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pack, J.D., Monkhorst, H.J.: "Special points for Brillonln-zone integrations"—a reply. Phys. Rev. B 16, 1748–1749 (1977)CrossRefGoogle Scholar
  36. 36.
    Muranghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bhattacharjee, R., Chattopadhyaya, S.: Effects of barium (Ba) doping on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds - A theoretical investigation using DFT based FP-LAPW approach. Mater. Chem. Phys. 199, 295–312 (2017)CrossRefGoogle Scholar
  38. 38.
    Chattopadhyaya, S., Bhattacharjee, R.: Theoretical study of structural, electronic and optical properties of \(\text{ Ba }_{x}\text{ Pb }_{1-x}\text{ S }\), \(\text{ Ba }_{x}\text{ Pb }_{1-x}\)Se and Ba\(_{x}\)Pb\(_{1-x}\)Te ternary alloys using FP-LAPW approach. J. Alloys Compd. 694, 1348–1364 (2017)CrossRefGoogle Scholar
  39. 39.
    Drablia, S., Boukhris, N., Boulechfar, R., Meradji, H., Ghemid, S., Ahmed, R., Bin Omran, S., El Haj Hassan, F., Khenata, R.: Ab initio calculations of the structural, electronic, thermodynamic and thermal properties of \(\text{ BaSe }\_{1-x}\text{ Te }\_{x}\) alloys. Phys. Scr. 92, 105701 (2017)CrossRefGoogle Scholar
  40. 40.
    Bahloul, B., Bentabet, A., Amirouche, L., Bouhadda, Y., Bounab, S., Deghfel, B., Fenineche, N.: Ab initio calculations of structural, electronic, optical and thermodynamic properties of alkaline earth tellurides \(\text{ BaxSr }_{1-x}\)Te. J. Phys. Chem. Solids 75, 307–314 (2014)CrossRefGoogle Scholar
  41. 41.
    Grzybowski, T.A., Ruoff, A.L.: Band-overlap metallization of BaTe. Phys. Rev. Lett. 53, 489–492 (1984)CrossRefGoogle Scholar
  42. 42.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  43. 43.
    Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996)CrossRefGoogle Scholar
  44. 44.
    Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L.: Half-metallic ferromagnetism of zinc-blende CrS and CrP: a first-principles pseudopotential study. Solid State Commun. 133, 301 (2005)CrossRefGoogle Scholar
  45. 45.
    Gao, G.Y., Yao, K.L., Şaşıoğlu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B 75, 174442 (2007)CrossRefGoogle Scholar
  46. 46.
    Doumi, B., Mokaddem, A., Dahmane, F., Sayede, A., Tadjer, A.: A novel theoretical design of electronic structure and half-metallic ferromagnetism in the 3d (V)-doped rock-salts SrS, SrSe, and SrTe for spintronics. RSC Adv. 112, 92328 (2015)CrossRefGoogle Scholar
  47. 47.
    Cherfi, Y., Mokaddem, A., Bensaid, D., Doumi, B., Sayede, A., Dahmane, F.: A novel theoretical investigation of electronic structure and half-metallic ferromagnetism in 3d (V)-doped InP for spintronic applications. J. Supercond. Nov. Magn. 29, 1813–1817 (2016)CrossRefGoogle Scholar
  48. 48.
    Zolweg, R.J.: Optical absorption and photoemission of barium and strontium oxides, sulfides, selenides, and tellurides. Phys. Rev. 111, 113–119 (1958)CrossRefGoogle Scholar
  49. 49.
    Saum, G.A., Hensley, E.B.: Fundamental optical absorption in the IIA-VIB compounds. Phys. Rev. 113, 1019–1022 (1959)CrossRefGoogle Scholar
  50. 50.
    Soulen Jr., R.J., Byers, J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheng, S.F., Broussard, P.R., Tanaka, C.T., Nowak, J., Moodera, J.S., Barry, A., Coey, J.M.D.: Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998)CrossRefGoogle Scholar
  51. 51.
    Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)CrossRefGoogle Scholar
  52. 52.
    Sato, K., Dederichs, P.H., Araki, K., Katayama-Yoshida, H.: Ab initio materials design and Curie temperature of GaN-based ferromagnetic semiconductors. Phys. Status Solidi C 7, 2855–2859 (2003)CrossRefGoogle Scholar
  53. 53.
    Sato, K., Katayama-Yoshida, H., Dederichs, P.H.: Curie temperatures of III–V diluted magnetic semiconductors calculated from first-principles in mean field approximation. J. Supercond. 16, 31–35 (2003)CrossRefGoogle Scholar
  54. 54.
    Akai, H.: Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys. Rev. Lett. 81, 3002–3005 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Physico-Chemical StudiesUniversity of SaidaSaidaAlgeria
  2. 2.Department of Physics, Faculty of SciencesDr. Tahar Moulay University of SaidaSaidaAlgeria
  3. 3.Centre Universitaire Nour Bachir El BayadhEl BayadhAlgeria
  4. 4.Theoretical Physics LaboratoryU.S.T.H.B.AlgiersAlgeria
  5. 5.Unité de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Faculté des SciencesUniversité d’ArtoisLensFrance
  6. 6.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  7. 7.IFIMUP and IN-Institute of Nanoscience and NanotechnologyUniversidade do PortoPortoPortugal

Personalised recommendations