Journal of Computational Electronics

, Volume 17, Issue 3, pp 1199–1209 | Cite as

A nonlinear model to assess DC/AC performance reliability of submicron SiC MESFETs

  • S. Rehman
  • M. M. AhmedEmail author
  • U. Rafique
  • M. N. Khan


A modified nonlinear model to predict direct-current (DC) and alternating-current (AC) characteristics of submicron SiC metal–semiconductor field-effect transistors (MESFETs) is presented. Such devices are normally operated under high-bias conditions, resulting in intense channel conditions and deviation from the usual device response. It has been demonstrated that, under relatively high drain bias, the Schottky barrier depletion is modified, causing the drain current to increase rapidly and thereby making the control of the Schottky barrier gate less effective. It has been observed that, when the ratio of the transconductance to the output conductance (\(g_\mathrm{m}/g_\mathrm{d}\)) becomes less than unity, the device operational capabilities are drastically affected. Additionally, the small-signal intrinsic parameters of SiC MESFETs were assessed by evaluating the device Miller capacitances at various bias levels, revealing a significant increase in their magnitude at relatively high drain bias (\(V_{\mathrm{ds}}\ge 40\) V), which leads to deterioration of the high-frequency capabilities of the device, including the unity-gain frequency, \(f_\mathrm{T}\). Compared with the best reported model, the developed technique exhibited \(\sim 48\,\%\) improved accuracy in predicting the IV characteristics of submicron SiC MESFETs and \(\sim 63.5\,\%\) improvement in evaluating the output conductance of the device. Thus, this technique can be employed to determine device reliability under intense operating conditions.


MESFET modeling DC characterization MESFET AC parameters High-bias operation 


  1. 1.
    Sadler, R.A., Allen, S.T., Alcorn, T.S., Pribble, W.L., Sumakeris, J., Palmour, J.W., Kehias, L.T.: SiC MESFET with output power of 50 watts CW at S-band. In: 56th annual device research conference digest, pp. 92–93 (1998)Google Scholar
  2. 2.
    Song, N.J., Kim, J.K., Choi, C.K., Burm, J.W.: Fabrication of 4H-SiC MESFETs on conducting substrates and analysis of their premature breakdown. J. Korean Phys. Soc. 44(2), 418–422 (2004)Google Scholar
  3. 3.
    Gilmore, R., Besser, L.: Practical RF Circuit Design for Modern Wireless Systems: Active Circuits and Systems. Vol. II, vol. 2. Artech House, Norwood (2003)Google Scholar
  4. 4.
    Ahmed, M.M., Riaz, M., Ahmed, U.F.: An improved model for the I–V characteristics of submicron SiC MESFETs by evaluating the potential distribution inside the channel. J. Comput. Electron. 16(3), 514–525 (2017)CrossRefGoogle Scholar
  5. 5.
    Rorsman, N., Nilsson, P.Å., Eriksson, J., Andersson, K., Zirath, H.: Investigation of the scalability of 4H-SiC MESFETs for high frequency applications. In: Materials Science Forum, vol. 457. Trans Tech Publ, pp. 1229–1232 (2004)Google Scholar
  6. 6.
    Honda, H., Ogata, M., Sawazaki, H., Ono, S., Arai, M.: RF characteristics of short-channel SiC MESFETs. In: Materials Science Forum, vol. 433. Trans Tech Publ, pp. 745–748 (2003)Google Scholar
  7. 7.
    Yim, J.H., Seo, H.S., Lee, D.H., Kim, C.H., Kim, H.J.: Short-channel effect in 4H-SiC ion-implanted planar MESFETs. J. Korean Phys. Soc. 59(3), 2368–2371 (2011)CrossRefGoogle Scholar
  8. 8.
    Hjelmgren, H., Allerstam, F., Andersson, K., Nilsson, P.-A., Rorsman, N.: Transient simulation of microwave SiC MESFETs with improved trap models. IEEE Trans. Electron Devices 57(3), 729–732 (2010)CrossRefGoogle Scholar
  9. 9.
    Hjelmgren, H., Andersson, K., Eriksson, J., Nilsson, P.K., Südow, M., Rorsman, N.: Electro-thermal simulations of a microwave 4H-SiC MESFET on high purity semi-insulating substrate. Solid State Electron. 51(8), 1144–1152 (2007)CrossRefGoogle Scholar
  10. 10.
    Yuk, K.S., Branner, G.R.: An empirical large-signal model for SiC MESFETs with self-heating thermal model. IEEE Trans. Microw. Theory Tech. 56(11), 2671–2680 (2008)CrossRefGoogle Scholar
  11. 11.
    Ahmed, M.M.: Schottky barrier depletion modification-a source of output conductance in submicron GaAs MESFETs. IEEE Trans. Electron Devices 48(5), 830–834 (2001)CrossRefGoogle Scholar
  12. 12.
    Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)CrossRefGoogle Scholar
  13. 13.
    Cao, Q., Zhang, Y., Zhang, Y., Lv, H., Wang, Y., Tang, X., Guo, H.: Improved empirical DC I–V model for 4H-SiC MESFETs. Sci. China Ser. F: Inf. Sci. 51(8), 1184–1192 (2008)Google Scholar
  14. 14.
    Angelov, I., Zirath, H., Rosman, N.: A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans. Microwave Theory Tech. 40(12), 2258–2266 (1992)CrossRefGoogle Scholar
  15. 15.
    McCamant, A.J., McCormack, G.D., Smith, D.H.: An improved GaAs MESFET model for SPICE. IEEE Trans. Microwave Theory Tech. 38(6), 822–824 (1990)CrossRefGoogle Scholar
  16. 16.
    Curtice, W.R., Ettenberg, M.: A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans. Microwave Theory Tech. 33, 1383–1394 (1985)CrossRefGoogle Scholar
  17. 17.
    Ladbrooke, P.H.: MMIC Design: GaAs FETs and HEMTs. Artech House, Boston (1989)Google Scholar
  18. 18.
    Memon, N.M., Ahmed, M.M., Rehman, F.: A comprehensive four parameters I–V model for GaAs MESFET output characteristics. Solid State Electron. 51(3), 511–516 (2007)CrossRefGoogle Scholar
  19. 19.
    McNally, P.J., Daniels, B.: Compact DC model for submicron GaAs MESFETs including gate-source modulation effects. Microelectron. J. 32(3), 249–251 (2001)CrossRefGoogle Scholar
  20. 20.
    Huang, M., Goldsman, N., Chang, C.-H., Mayergoyz, I., McGarrity, J.M., Woolard, D.: Determining 4H silicon carbide electronic properties through combined use of device simulation and metal-semiconductor field-effect-transistor terminal characteristics. J. Appl. Phys. 84(4), 2065–2070 (1998)CrossRefGoogle Scholar
  21. 21.
    Ramezani, Z., Orouji, A.A., Agharezaei, H.: A novel symmetrical 4H-SiC MESFET: an effective way to improve the breakdown voltage. J. Comput. Electron. 15(1), 163–171 (2016)CrossRefGoogle Scholar
  22. 22.
    Mousa, A.A., El-Shorbagy, M.A., Abd-El-Wahed, W.F.: Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evolut. Comput. 3, 1–14 (2012)CrossRefGoogle Scholar
  23. 23.
    Memon, Q.D., Ahmed, M.M., Memon, N.M., Rafique, U.: An efficient mechanism to simulate DC characteristics of GaAs MESFETs using swarm optimization. In: 2013 IEEE 9th international conference on emerging technologies, pp. 1–5 (2013)Google Scholar
  24. 24.
    Neamen, D .A.: Semiconductor Physics and Devices. McGraw-Hill Higher Education, New York (2007)Google Scholar
  25. 25.
    Kun, S., Chang-Chun, C., Yin-Tang, Y., Bin, C., Xian-Jun, Z., Zhen-Yang, M.: Effects of gate-buffer combined with a p-type spacer structure on silicon carbide metal semiconductor field-effect transistors. Chin. Phys. B 21(1), 017202 (2012)CrossRefGoogle Scholar
  26. 26.
    Hallgren, R.B., Litzenberg, P.H.: Tom3 capacitance model: linking large-and small-signal mesfet models in spice. IEEE Trans. Microwave Theory Tech. 47(5), 556–561 (1999)CrossRefGoogle Scholar
  27. 27.
    Sriram, S., Hagleitner, H., Namishia, D., Alcorn, T., Smith, T., Pulz, B.: High-gain SiC MESFETs using source-connected field plates. IEEE Electron Device Lett. 30(9), 952–953 (2009)CrossRefGoogle Scholar
  28. 28.
    Andersson, K., Südow, M., Nilsson, P.-A., Sveinbjornsson, E., Hjelmgren, H., Nilsson, J., Stahl, J., Zirath, H., Rorsman, N.: Fabrication and characterization of field-plated buried-gate SiC MESFETs. IEEE Electron Device Lett. 27(7), 573–575 (2006)CrossRefGoogle Scholar
  29. 29.
    Ahmed, M.M.: An improved method to estimate intrinsic small signal parameters of a GaAs MESFET from measured DC characteristics. IEEE Trans. Electron Devices 50(11), 2196–2201 (2003)CrossRefGoogle Scholar
  30. 30.
    Riaz, M., Ahmed, M.M., Rafique, U., Ahmed, U.F.: Assessment of intrinsic small signal parameters of submicron SiC MESFETs. Solid State Electron. 139(1), 80–87 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Rehman
    • 1
  • M. M. Ahmed
    • 1
    Email author
  • U. Rafique
    • 1
  • M. N. Khan
    • 1
  1. 1.Department of Electrical EngineeringCapital University of Science and TechnologyIslamabadPakistan

Personalised recommendations