Analytical modeling of 2DEG and 2DHG charge balancing in quaternary \(\hbox {Al}_{0.42}\hbox {In}_{0.03}\hbox {Ga}_{0.55}\hbox {N/Al}_{0.3}\hbox {In}_{0.7}\hbox {N}\) HEMTs

Article
  • 11 Downloads

Abstract

A two-dimensional analytical model considering the polarization-induced charges and defect-induced traps at all interfaces of the AlInGaN/AlInN High Electron Mobility Transistor (HEMT) device structure has been developed. The charge-balancing concept based on a two-dimensional hole gas (2DHG) on top of a two-dimensional electron gas (2DEG) improves the dynamic device behavior. The 2DHG is generated by negative polarization and the 2DEG by positive polarization. Once the 2DHG appears, it prevents further depletion of the 2DEG. This dependence of the 2DEG density on the 2DHG confines the quantum well near the Fermi level. The dependence of the variation of the electron density in the quantum well for the 2DEG and 2DHG is studied using the analytical model to improve the carrier concentration.

Keywords

2DEG 2DHG AlInGaN AlInN Negative polarization Positive polarization Fermi level 

References

  1. 1.
    Godwinraj, D.: Polarization based charge density drain current and small signal model for nano scale AlInGaN/AlN/GaN HEMT device. Superlattices Microstruct. 54, 188–203 (2013)CrossRefGoogle Scholar
  2. 2.
    Saremi, M.: Analysis of the reverse I–V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111, 043507 (2017)CrossRefGoogle Scholar
  3. 3.
    Hahn, H.: Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors. J. Appl. Phys. 117, 104508 (2015)CrossRefGoogle Scholar
  4. 4.
    Alahyarizadeh, G.H.: Comparative study of the performance characteristics of green InGaN SQW laser diodes with ternary AlGaN and quaternary AlInGaN electron blocking layer. Dig. J. Nanomater. Biostruct. 7(4), 1869–1880 (2012)Google Scholar
  5. 5.
    Mohanbabu, A.: Modelling of sheet carrier density and microwave frequency characteristics in spacer based AlGaN/AlN/GaN HEMT devices. Solid State Electron. 91, 44–52 (2014)CrossRefGoogle Scholar
  6. 6.
    Yan, J.: Two-dimensional electron and hole gases in \(\text{ In }_{{x}}\text{ Ga }_{{1 - x}}\, \text{ N/Al }_{{y}}\, \text{ Ga }_{{1 - y}}\text{ N/GaN }\) heterostructure for enhancement mode operation. J. Appl. Phys. 116, 054502 (2014)CrossRefGoogle Scholar
  7. 7.
    Lee, H.C.: AlInGaN metal insulator semiconductor photodetectors at UV-C 280 nm. Electrochem. Solid State Lett. 12, H357–H360 (2009)CrossRefGoogle Scholar
  8. 8.
    Al Mustafa, N.: The coexistence of two-dimensional electron and hole gases in GAN-based heterostructures. J. Appl. Phys. 111, 0445121–6 (2012)CrossRefGoogle Scholar
  9. 9.
    Arulkumaran, S.: Studies on the influence of i-GaN, n-GaN, P-GaN and InGaN cap layers in AlGaN/GaN high-electron-mobility transistors. J. Appl. Phys. 44, 2953–2960 (2005)CrossRefGoogle Scholar
  10. 10.
    Reuters, B.: Polarization-engineered enhancement-mode high-electron mobility transistors using quaternary AlInGaN barrier layers. J. Electron. Mater. 42, 5 (2013)CrossRefGoogle Scholar
  11. 11.
    Al Mustafa, N.: The coexistence of two-dimensional electron and hole gases in GaN-based heterostructures. J. Appl. Phys. 111, 044–512 (2012)CrossRefGoogle Scholar
  12. 12.
    Faramehr, S.: Modelling of 2DEG and 2DHG in i-GaN capped Al GaN /AlN/GaN HEMTs. In: International Conference on Microelectronics, Belgrade (2014)Google Scholar
  13. 13.
    Reuters, B.: Fabrication of p-channel heterostructure field effect transistors with polarization-induced two-dimensional hole gases at metal–polar GaN/AlInGaN interfaces. J. Appl. Phys. 47, 175103 (2014)Google Scholar
  14. 14.
    Chini, A.: Power and linearity characteristics of field-plated recessed-gate AlGaN–GaN HEMTs. IEEE Electron. Dev. Lett. 25, 229–231 (2004)CrossRefGoogle Scholar
  15. 15.
    Kim, S.M.: Piezoelectric effects on the Shockley–Read–Hall generation currents in a p–n junction. Integr. Ferroelectr. 159, 34–40 (2015)CrossRefGoogle Scholar
  16. 16.
    Ibbetson, J.P.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)CrossRefGoogle Scholar
  17. 17.
    Vurgaftman, I.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 11 (2013)Google Scholar
  18. 18.
    Heikman, S.: Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures. J. Appl. Phys. 93, 12 (2010)Google Scholar
  19. 19.
    Lu, B.: Schottky–Drain technology for AlGaN/GaN high-electron mobility transistors. IEEE Electron. Dev. Lett. 31, 4 (2012)Google Scholar
  20. 20.
    Hahn, H.: p-Channel enhancement and depletion mode GaN-based HFETs with quaternary back barriers. IEEE Trans. Electron. Dev. 60, 10 (2012)Google Scholar
  21. 21.
    Liou, B.: Vegard’s law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys. Proc. SPIE 5628, 296–305 (2005)CrossRefGoogle Scholar
  22. 22.
    Shen, L.: AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron. Dev. Lett. 22, 10 (2001)Google Scholar
  23. 23.
    Ytterdal, T.: Device Modeling for Analog and RF CMOS Circuit Design. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  24. 24.
    Faramehr, S.: Drift-diffusion and hydro-dynamic modelling of current collapse in GaN HEMTs for RF power application. Semicond. Sci. Technol. 29, 025007–10 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Anbuselvan
    • 1
  • P. Amudhalakshmi
    • 1
  • N. Mohankumar
    • 1
  1. 1.S.K.P. Engineering CollegeChinnakangiyanurIndia

Personalised recommendations