Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the electronic and transport properties of semiconducting carbon nanotubes: the role of \(\hbox {sp}^3\)-defects

  • 253 Accesses

  • 6 Citations


The effect of \(\hbox {sp}^3\)-defects on the electronic and transport properties of semiconducting carbon nanotubes has been systematically studied on the basis of a quantum mechanical tight-binding model. We have calculated the band structure for carbon nanotubes with ordered defect patterns showing a large impact on the bandgap energy whereas for randomly distributed defects the band structure remains relatively robust. The transport behavior has been studied on the basis of the Green’s function method. The results indicate that the conductance of defective carbon nanotubes strongly depends on the number of defects and the tube diameter. We further show that the transport properties can be classified, depending on the number of defects, into two regimes which are either characterized by the mean-free path or the localization length. For both, analytical equations describing the impact of the tube diameter as well as the number of defects are derived. Comparing these values with the channel length indicates the dominant transport regime.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

  2. 2.

    Javey, A., Tu, R., Farmer, D.B., Guo, J., Gordon, R.G., Dai, H.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345 (2005)

  3. 3.

    Chen, J., Klinke, C., Afzali, A., Avouris, P.: Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005)

  4. 4.

    Klinke, C., Hannon, J.B., Afzali, A., Avouris, P.: Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett. 6, 906 (2006)

  5. 5.

    Toader, M., Schubel, R., Hartmanna, M., Scharfenberg, L., Jordan, R., Mertig, M., Schulza, S., Gessnera, T., Hermann, S.: Enhancement of carbon nanotube FET performance via direct synthesis of poly (sodium 4-styrenesulfonate) in the transistor channel. Chem. Phys. Lett. 661, 1 (2016)

  6. 6.

    Li, E.Y.: Band gap engineering of carbon nanotubes via regular addition patterns of covalent functional groups. Carbon 100, 187 (2016)

  7. 7.

    Seifert, G., Koehler, T., Frauenheim, T.: Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes. Appl. Phys. Lett. 77, 1313 (2000)

  8. 8.

    Ranjan, N., Seifert, G.: Transport properties of functionalized carbon nanotubes: density-functional Green’s function calculations. Phys. Rev. B 73, 153408 (2006)

  9. 9.

    Lee, Y.S., Nardelli, M.B., Marzari, N.: Band structure and quantum conductance of nanostructures from maximally localized wannier functions: the case of functionalized carbon nanotubes. Phys. Rev. Lett. 95, 076804 (2005)

  10. 10.

    Collins, P.G.: Defects and disorder in carbon nanotubes. In: Narlikar, A., Fu, Y. (eds.) Oxford Handbook of Nanoscience and Nanotechnology: Materials: Structures, Properties, and Characterization Techniques. Oxford University Press, Oxford (2010)

  11. 11.

    Claus, M., Teich, D., Mothes, S., Seifert, G., Schroeter, M.: Multiscale-modeling of CNTFETs with non-regular defect pattern. In: International Workshop on Computational Electronics (IWCE), p. 15554437 (2015)

  12. 12.

    Lopez-Bezanilla, A., Blase, X., Roche, S.: Quantum transport properties of chemically functionalized long semiconducting carbon nanotubes. Nano Res. 3, 288 (2010)

  13. 13.

    Park, H., Zhao, J., Lu, J.P.: Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett. 6, 916 (2006)

  14. 14.

    Flores, F., Biel, B., Rubio, A., Garcia-Vidal, F.J., Gomez-Navarro, C., de Pablo, P., Gomez-Herrero, J.: Anderson localization regime in carbon nanotubes: size dependent properties. J. Phys. Condens. Matter 20, 304211 (2008)

  15. 15.

    Teichert, F., Zienert, A., Schuster, J., Schreiber, M.: Strong localization in defective carbon nanotubes: a recursive Green’s function study. New J. Phys. 16, 123026 (2014)

  16. 16.

    Teichert, F., Zienert, A., Schuster, J., Schreiber, M.: Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime. Comput. Mater. Sci 138, 49 (2017)

  17. 17.

    Schroeter, M., Claus, M., Sakalas, P., Haferlach, M., Wang, D.: Carbon nanotube FET technology for radio-frequency electronics: sate-of-the-art overview (invited). IEEE J. Electron Devices Soc. 1, 9 (2013)

  18. 18.

    Claus, M., Mothes, S., Blawid, S., Schröter, M.: COOS: a wave-function based Schrödinger–Poisson solver for ballistic nanotube transistors. J. Comput. Electron. 13, 689 (2014)

  19. 19.

    Mothes, S., Claus, M., Schroeter, M.: Towards linearity in Schottky barrier CNTFETs. IEEE Trans. Nanotechnol. 14, 372 (2015)

  20. 20.

    Claus, M., Teich, D., Mothes, S., Seifert, G., Schroeter, M.: Impact of functionalization patterns on the performance of CNTFETs. In: International Workshop on Computational Electronics (IWCE), p. 14485116 (2014)

  21. 21.

    Randić, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449 (2003)

  22. 22.

    Clar, E.: The Aromatic sextet. In: Rondia, D., Cooke, M., Haroz, R.K. (eds.) Mobile Source Emissions Including Policyclic Organic Species. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 112. Springer, Dordrecht (1983)

  23. 23.

    Franklin, A.D., Luisier, M., Han, S.J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758 (2012)

  24. 24.

    Popescu, V., Zunger, A.: Extracting \(E\) versus \(k\) effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85, 085201 (2012)

  25. 25.

    Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett 42, 673 (1979)

  26. 26.

    Anantram, M.P., Govindan, T.R.: Conductance of carbon nanotubes with disorder: a numerical study. Phys. Rev. B 58, 4882 (1998)

  27. 27.

    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

  28. 28.

    Nardelli, M.B., Bernholc, J.: Mechanical deformations and coherent transport in carbon nanotubes. Phys. Rev. B 60, R16388(R) (1999)

  29. 29.

    López-Sancho, M.P., López-Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of the transfer matrices: application to Mo(100). J. Phys. F: Met. Phys. 14, 1205 (1984)

  30. 30.

    Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12, 203 (2013)

  31. 31.

    Seifert, G., Porezag, D., Frauenheim, T.: Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int. J. Quantum Chem. 58, 185 (1996)

  32. 32.

    Cresti, A., Roche, S.: Edge-disorder-dependent transport length scales in graphene nanoribbons: from Klein defects to the superlattice limit. Phys. Rev. B 79, 233404 (2009)

  33. 33.

    Gomez-Navarro, C., De Pablo, J.D., Gomez-Herrero, J., Biel, B., Garcia-Vidal, F.J., Rubio, A., Flores, F.: Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 4, 534 (2005)

Download references


This work was financially supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfAED).

Author information

Correspondence to D. Teich.

5. Appendix

5. Appendix

5.1 Construction of the Hamiltonian matrices

A schematic representation of how to construct the Hamiltonian for a CNT structure is shown in Fig. 8. The whole CNT structure can be simplified by representing the unit cells with \(N_{\text {cell}}\) layers, starting with the first layer connected to the left contact and ending up with the n-th layer coupled to the right contact. Every layer can be further divided into four sublayers, each described by an Hamiltonian matrix \(H_{\text {S}} \in \mathbb {R}^{4n \times 4n}\), where n determines the chiral index of the (n,0)-CNT. Because none of the carbon atoms in a sublayer is connected to direct neighbors, \(H_{\text {S}}\) is equal to identity

$$\begin{aligned} H_{\text {S}} = \left( \begin{matrix} 1 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 1 \end{matrix} \right) \cdot \varepsilon _{\text {2p}} \end{aligned}$$

The sublayers are connected to each other by two different coupling matrices \(V_{\text {1}}, V_{\text {2}} \in \mathbb {R}^{4n \times 4n}\), which have the form

$$\begin{aligned} V_{\text {1}}= & {} \left( \begin{matrix} 1 &{}\quad 1 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 1 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad 1 \end{matrix} \right) \cdot t_{\text {hopp}},\nonumber \\ V_{\text {2}}= & {} \left( \begin{matrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad 1 \end{matrix} \right) \cdot t_{\text {hopp}} \end{aligned}$$

The Hamiltonian \(H_{\text {C}} \in \mathbb {C}^{4nN_{\text {cell}} \times 4nN_{\text {cell}}}\) of the whole CNT structure can then be constructed out of those matrices. The block-diagonal form is given by

$$\begin{aligned} H_{\text {C}} = \left( \begin{matrix} H_{\text {S}} &{}\quad V_{\text {1}} &{}\quad &{}\quad &{}\quad &{}\quad A \\ V_{\text {1}}^{\dagger } &{}\quad H_{\text {S}} &{}\quad V_{\text {2}} &{}\quad &{}\quad &{}\quad \\ &{}\quad V_{\text {2}}^{\dagger } &{}\quad H_{\text {S}} &{}\quad V_{\text {2}} &{}\quad &{}\quad \\ &{}\quad &{}\quad V_{\text {2}}^{\dagger } &{}\quad H_{\text {S}} &{}\quad \ddots &{}\quad \\ &{}\quad &{}\quad &{}\quad \ddots &{}\quad \ddots &{}\quad V_{\text {1}} \\ A^{\dagger } &{}\quad &{}\quad &{}\quad &{}\quad V_{\text {1}}^{\dagger } &{}\quad H_{\text {S}} \end{matrix} \right) , \end{aligned}$$

where the submatrix A in the upper right and lower left corner determines whether a periodic or semi-infinite structure is considered

$$\begin{aligned} A = {\left\{ \begin{array}{ll} V_{\text {2}} &{} \text { if periodic }, \\ 0 &{}\text { if semi-infinite }. \end{array}\right. } \end{aligned}$$

Note that for a periodic structure the coupling matrix elements have to be multiplied by the phase factor exp\(( i k R_{ij} )\) where \(R_{ij}\) denotes the distance of connected C-atoms.

5.2 Recursive Green’s function method

If the Hamiltonian of the device structure is defined in a block-diagonal form according to (18), the device Green’s function can be computed by a recursive procedure. Let \(V_{0,1}\) be the coupling matrix of the first principal layer to left contact. The Green’s function of the first principal layer is then calculated through coupling of the left surface GF to the unperturbed Hamiltonian \(h_1\) following

$$\begin{aligned} G_{1,1}^{\text {L}} = \left( E - h_1 - V_{1,0} g_{\text {L}} V_{0,1} \right) ^{-1} \end{aligned}$$

which leads then to the GF matrix

$$\begin{aligned} G_{0,1}^{\text {L}} = g_{\text {L}} V_{0,1} G_{1,1}^{\text {L}}. \end{aligned}$$

This enables the calculation of the GF of the i-th layer by using the recurrence formula

$$\begin{aligned} G_{i,i}^{\text {L}} = \left( E - h_i - V_{i,i-1} G_{i-1,i-1}^{\text {L}} V_{i-1,i} \right) ^{-1} \end{aligned}$$

and thus

$$\begin{aligned} G_{0,i}^{\text {L}} = G^{\text {L}}_{0,i-1} V_{i-1,i} G_{i,i}^{\text {L}}. \end{aligned}$$

Finally, the full Green’s function \(G_{n+1,n+1}\) is obtained through the connection to the right lead following

$$\begin{aligned} G_{n+1,n+1} = \left( g_{\text {R}}^{-1} - V_{n+1,n} G_{n,n}^{\text {L}} V_{n,n+1} \right) ^{-1} \end{aligned}$$


$$\begin{aligned} G_{0,n+1} = G_{0,n}^{\text {L}} V_{n,n+1} G_{n+1,n+1}. \end{aligned}$$

Eventually, the transmission probability is given by

$$\begin{aligned} T(E) = \mathrm {Tr} \left[ \varGamma _{\text {L}} G_{0,n+1}(E) \varGamma _{\text {R}} G_{0,n+1}^{\dagger }(E) \right] . \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teich, D., Claus, M. & Seifert, G. On the electronic and transport properties of semiconducting carbon nanotubes: the role of \(\hbox {sp}^3\)-defects. J Comput Electron 17, 521–530 (2018). https://doi.org/10.1007/s10825-018-1135-7

Download citation


  • Carbon nanotubes
  • Tight-binding
  • Effective band structure
  • Green’s function
  • Transport
  • Defects