Advertisement

Wideband circularly polarized magnetoelectric dipole antenna with I-slot for C-band applications

  • Abhishek Kumar Jain
  • Binod Kumar Kanaujia
  • Santanu Dwari
  • Ganga Prasad Pandey
  • Dinesh Kumar SinghEmail author
Article
  • 37 Downloads

Abstract

This paper presents a circularly polarized wideband magnetoelectric dipole antenna with a defective semicircular patch for C-band applications (4–8 GHz). In the proposed design, in order to get proper impedance matching and stable gain, a pair of folded vertical patches is shorted between a pair of defective semicircular patches and minimum ground plane. The defective semicircular patches work as an electric dipole, while the vertical patches work as a magnetic dipole. The Γ-shaped single-feed structure is used to excite both dipoles together to achieve symmetrical radiation patterns. Minimum ground and the folded structure maintain the low profile of the presented design. The circular polarization is obtained by incorporating I-shaped slots in semicircular patches, extending to the lower and upper sides of the curved edges symmetrically on the both sides. A prototype was manufactured and the measured results agreed well with the simulated results. The results show an impedance bandwidth of 60.37% (S11 < − 10 dB) from 3.71 to 6.91 GHz, 3-dB axial ratio bandwidth of 20.60% from 3.71 to 4.55 GHz and a broadside stable gain of 6 ± 0.5 dBic. The antenna also shows good radiation efficiency of around 80% over the entire operating range. Therefore, the proposed antenna can be used in 5G Wi-Fi (5.15–5.875 GHz) wireless communication systems and several C-band applications.

Keywords

Magnetoelectric dipole Circularly polarized Wideband Axial ratio 

References

  1. 1.
    James, J.R., Hall, P.S.: Handbook of Microstrip Antennas (ch. 4). Peter Peregrinus, London (1989)CrossRefGoogle Scholar
  2. 2.
    Clavin, A.: A new antenna feed having equal E- and H-plane patterns. IRE Trans. Antennas Propag. 2(3), 113–119 (1954)CrossRefGoogle Scholar
  3. 3.
    Clavin, A., Huebner, D.A., Kilburg, F.J.: An improved element for use in array antennas. IEEE Trans. Antennas Propag. 22(4), 521–526 (1974)CrossRefGoogle Scholar
  4. 4.
    Idayachandran, G., Nakkeeran, R., Rajesh, A.: Design and analysis of broadband magneto electric dipole antenna for LTE femtocell base stations. Electron. Lett. 52(14), 74–576 (2016)Google Scholar
  5. 5.
    Ge, L., LukK, M.: A magneto-electric dipole antenna with low-profile and simple structure. IEEE Antennas Wirel. Propag. Lett. 12, 140–142 (2013)CrossRefGoogle Scholar
  6. 6.
    Idayachandran, G., Nakkeeran, R.: Compact magneto-electric dipole antenna for LTE femtocell base stations. Electron. Lett. 52(14), 574–576 (2016)CrossRefGoogle Scholar
  7. 7.
    Ding, C., Luk, K.M.: Compact low-profile magneto-electric dipole antenna. IEEE Antennas Wirel. Propag. Lett. 15, 1642–1644 (2016)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Chen, S., Ren, Y., Cheng, J., Liu, Q.H.: A broadband proximity-coupled dual-polarized microstrip antenna with L-shape backed cavity for X-band applications. Int. J. Electron. Commun. (AEÜ) 69(9), 1226–1232 (2015)CrossRefGoogle Scholar
  9. 9.
    Feng, B., Li, S., An, W., Hong, W., Wang, S., Yin, S.: A printed dual-wideband magneto-electric dipole antenna for WWAN/LTE applications. Int. J. Electron. Commun. (AEÜ) 68(10), 926–932 (2014)CrossRefGoogle Scholar
  10. 10.
    Arnieri, E., Boccia, E., Amendola, G., Massa, G.D.: A compact high gain antenna for small satellite applications. IEEE Trans. Antennas Propag. 55(2), 277–282 (2007)CrossRefGoogle Scholar
  11. 11.
    Son, W.I., Lim, W.G.: Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver. IEEE Trans. Antennas Propag. 58(5), 1503–1510 (2010)CrossRefGoogle Scholar
  12. 12.
    Nasimuddin, Z., Chen, N., Qing, X.: Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications. IEEE Trans. Antennas Propag. 58(12), 3821–3828 (2010)CrossRefGoogle Scholar
  13. 13.
    Bian, L., Guo, Y.X., Ong, L.C., Shi, X.Q.: Wideband circularly polarized patch antenna. IEEE Trans. Antennas Propag. 54(9), 2682–2686 (2006)CrossRefGoogle Scholar
  14. 14.
    Lau, K.L., Luk, K.M., Lee, K.F.: Design of a circularly-polarized vertical patch antenna. IEEE Trans. Antennas Propag. 54, 1332–1335 (2006)CrossRefGoogle Scholar
  15. 15.
    Chen, H.-D., Sim, C.-Y.-D., Kuo, S.-H.: Compact broadband dual coupling-feed circularly polarized RFID microstrip tag antenna mountable on a metallic surface. IEEE Trans. Antennas Propag. 60(12), 5571–5577 (2012)CrossRefGoogle Scholar
  16. 16.
    Guo, Y.-X., Bian, L., Shi, X.Q.: Broadband circularly polarized annular-ring microstrip antenna. IEEE Trans. Antennas Propag. 57(8), 2474–2477 (2009)CrossRefGoogle Scholar
  17. 17.
    Hu, Y.-J., Ding, W.-P., Cao, W.-Q.: Broadband circularly polarized microstrip antenna array using the sequentially rotated technique. IEEE Antennas Wirel. Propag. Lett. 10, 1358–1361 (2011)CrossRefGoogle Scholar
  18. 18.
    Roy, J.S., Thomas, M.: Design of a circularly polarized microstrip antenna for WLAN. Progr. Electromagn. Res. 3, 79–90 (2008)CrossRefGoogle Scholar
  19. 19.
    Tong, K.F., Wong, T.P.: Circularly polarized U-slot antenna. IEEE Antennas Propag. Soc. 55(8), 2382–2385 (2007)CrossRefGoogle Scholar
  20. 20.
    Hisao, I.W.: A circularly polarized small-size microstrip antenna with a cross-slot. IEEE Trans. Antennas Propag. 44(10), 1399–1401 (1996)CrossRefGoogle Scholar
  21. 21.
    Singh, D.K., Kanaujia, B.K., Dwari, S., Pandey, G.P., Kumar, S.: Novel quad-band circularly polarized capacitive-fed microstrip antenna for C-band applications. Microw. Opt. Technol. Lett. 57(11), 2622–2628 (2015)CrossRefGoogle Scholar
  22. 22.
    Ram Krishna, R.V.S., Kumar, R.: Design of ultra-wideband trapezoidal shape slot antenna with circular polarization. Int. J. Electron. Commun. (AEÜ) 67(12), 1038–1047 (2013)CrossRefGoogle Scholar
  23. 23.
    Singh, D.K., Kanaujia, B.K., Dwari, S., Pandey, G.P., Kumar, S.: Reconfigurable circularly polarized capacitive coupled microstrip antenna. Int. J. Microw. Wirel. Technol. 9(4), 843–850 (2017)CrossRefGoogle Scholar
  24. 24.
    Bolster, M.F.: A new type of circular polarizer using crossed dipoles. IRE Trans. Microw. Theory Tech. 9(5), 385–388 (1961)CrossRefGoogle Scholar
  25. 25.
    Yang, D., Yang, H.-C.: A novel circularly polarized bowtie antenna for Inmarsat communications. IEEE Antennas Propag. Mag. 54(4), 317–325 (2012)CrossRefGoogle Scholar
  26. 26.
    Baik, J.-W., Lee, K.J., Yoon, W.-S., Lee, T.-H., Kim, Y.-S.: Circularly polarized printed crossed dipole antennas with broadband axial ratio. Electron. Lett. 44(13), 785–786 (2008)CrossRefGoogle Scholar
  27. 27.
    Qu, S.W., Li, J.L., Xue, Q., Chan, C.H.: Wideband cavity-backed bowtie antenna with pattern improvement. IEEE Trans. Antennas Propag. 56(12), 3850–3854 (2008)CrossRefGoogle Scholar
  28. 28.
    Zheludev, N.I., Kivshar, Y.S.: Review: from metamaterials to meta devices. Nat. Mater. 11, 917–924 (2012)CrossRefGoogle Scholar
  29. 29.
    La Spada, L., Vegni, L.: Review: electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials 11(603), 1–21 (2018)Google Scholar
  30. 30.
    Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332, 1291–1294 (2011)CrossRefGoogle Scholar
  31. 31.
    La Spada, L., Vegni, L.: Near-zero-index wires. Opt. Exp. 25(20), 23699–23708 (2017)CrossRefGoogle Scholar
  32. 32.
    Lee, Y., Kim, S.-J., Park, H., Lee, B.: Review: metamaterials and metasurfaces for sensor applications. Sensors 17(1726), 1–28 (2017)Google Scholar
  33. 33.
    Qin, F., et al.: Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2(1), 1–8 (2016)CrossRefGoogle Scholar
  34. 34.
    McManus, T.M., La Spada, L., Hao, Y.: Isotropic and anisotropic surface wave cloaking techniques. J. Opt. 18(4), 044005 (2016)CrossRefGoogle Scholar
  35. 35.
    Padooru, Y.R., et al.: New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: applications to wideband absorbers. IEEE Trans. Antennas Propag. 60(12), 5727–5742 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Iovine, R., La Spada, L., Tarparelli, R., Vegni, L.: Spectral Green’s function for SPR meta-structures. Mater. Sci. Forum 792, 110–114 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abhishek Kumar Jain
    • 1
  • Binod Kumar Kanaujia
    • 2
  • Santanu Dwari
    • 1
  • Ganga Prasad Pandey
    • 3
  • Dinesh Kumar Singh
    • 4
    Email author
  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Department of Information and Communication Technology, School of TechnologyPandit Deendayal Petroleum UniversityGandhi NagarIndia
  4. 4.Department of Electronics and Communication EngineeringG L Bajaj Institute of Technology and ManagementGreater NoidaIndia

Personalised recommendations