Advertisement

Journal of Computational Electronics

, Volume 17, Issue 1, pp 238–245 | Cite as

A GaN enhancement-mode reverse blocking MISHEMT with MIS field-effect drain for bidirectional switch

  • Yijun Shi
  • Wanjun Chen
  • Fangzhou Wang
  • Jie Liu
  • Xingtao Cui
  • Guanhao Hu
  • Chao Liu
  • Zhaoji Li
  • Qi Zhou
  • Bo Zhang
Article
  • 187 Downloads

Abstract

In this work, a novel GaN-based reverse blocking metal–insulator–semiconductor high electron mobility transistor (RB-MISHEMT) with enhancement mode (E-mode) is investigated by the TCAD simulation. To enable the device with capability of blocking reverse current, a MIS field-effect drain consisting of electrically shorted ohmic and recessed MIS structure is adopted. The proposed GaN E-mode RB-MISHEMT features a low reverse current of 10 \(\upmu \)A at − 900 V and a low turn-on voltage of drain electrode of 0.38 V at 10 mA. On-state power loss of the bidirectional switch based on proposed GaN E-mode RB-MISHEMT shows a 34% reduction compared with that of the bidirectional switch based on GaN E-mode reverse conducting MISHEMT. And the proposed E-mode RB-MISHEMT is also compatible with standard E-mode MISHEMT. The high performance and processing compatibility of the proposed GaN RB-MISHEMT show that the device is promising for future power applications.

Keywords

GaN MISHEMT Reverse blocking MIS-FED Bidirectional switch Specific on-resistance 

Notes

Acknowledgements

This research is funded in part by the Sichuan Youth Science and Technology Foundation (No. 2017JQ0020), the Fundamental Research Funds for the Central Universities (No. ZYGX2016Z006) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030311016).

References

  1. 1.
    Kang, J., Hara, H., Hava, A.M., et al.: The matrix converter drive performance under abnormal input voltage conditions. IEEE Trans. Power Electron. 17, 721–730 (2002)CrossRefGoogle Scholar
  2. 2.
    Rodriguez, J., Rivera, M., Kolar, J.W., et al.: A review of control and modulation methods for matrix converters. IEEE Trans. Ind. Electron. 59, 58–70 (2012)CrossRefGoogle Scholar
  3. 3.
    Wheeler, P., Grant, D.: Optimised input filter design and low-loss switching techniques for a practical matrix converter. IEE Proc. Electr. Power Appl. 144, 53–60 (1997)CrossRefGoogle Scholar
  4. 4.
    Babaei, E.: A cascade multilevel converter topology with reduced number of switches. IEEE Trans. Power Electron. 23, 2657–2664 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, W., Li, Z., Ren, M., et al.: A snapback suppressed reverse-conducting IGBT with built-in diode by utilizing edge termination. Superlattices Microstruct. 70, 109–116 (2014)CrossRefGoogle Scholar
  6. 6.
    Chen, W., Li, Z., Zhang, B., et al.: A snapback suppressed reverse-conducting IGBT with soft reverse recovery characteristic. Superlattices Microstruct. 61, 59–68 (2013)CrossRefGoogle Scholar
  7. 7.
    Takei, M., Harada, Y., Ueno, K.: 600 V-IGBT with reverse blocking capability. In: IEEE International Symposium on Power Semiconductor Devices and IC’s, pp. 413–416 (2001)Google Scholar
  8. 8.
    Lindemann, A.: A new IGBT with reverse blocking capability. In: Entwurffur EPE Conference, vol. 215, Graz (2011)Google Scholar
  9. 9.
    Chen, K.J., Zhou, C.: Enhancement mode AlGaN/GaN HEMT and MISHEMT technology. Phys. Status Solidi A 208, 434–438 (2011)Google Scholar
  10. 10.
    Li, Z., Waldron, J., Dayal, R., et al.: High voltage normally-off GaN MOSC-HEMTs on silicon substrates for power switching applications. In: IEEE International Symposium on Power Semiconductor Devices and IC’s, pp. 45–48 (2012)Google Scholar
  11. 11.
    Yang, C., Xiong, J., Wei, J., et al.: Analytical model and new structure of the enhancement-mode polarization-junction HEMT with vertical conduction channel. Superlattices Microstruct. 92, 92–99 (2016)CrossRefGoogle Scholar
  12. 12.
    Adak, S., Swain, S.K., Rahaman, H., et al.: Impact of gate engineering in enhancement mode n\(^{\rm {++}}\)GaN/InAlN/AlN/GaN HEMTs. Superlattices Microstruct. 100, 306–314 (2016)CrossRefGoogle Scholar
  13. 13.
    Shi, Y., Huang, S., Bao, Q., et al.: Normally off GaN-on-Si MIS-HEMTs fabricated with LPCVD-SiN\(_{\rm {x}}\), passivation and high-temperature gate recess. IEEE Trans. Electron Devices 63, 614–619 (2016)CrossRefGoogle Scholar
  14. 14.
    Park, B., Lee, J., Cha, H.: Normally-off AlGaN/GaN-on-Si power switching device with embedded schottky barrier diode. Appl. Phys. Express 6, 031001 (2013)Google Scholar
  15. 15.
    Zhao, S., Mi, M., Hou, B., et al.: Mechanism of improving forward and reverse blocking voltages in AlGaN/GaN HEMTs by using schottky drain. Chin. Phys. B 23, 107303 (2014)Google Scholar
  16. 16.
    Zhao, S., Wand, Y., Yang, X., et al.: Reverse blocking enhancement of drain field plate in schottky-drain AlGaN/GaN high electron mobility transistors. Chin. Phys. B 23, 097305 (2014)Google Scholar
  17. 17.
    Zhou, Q., Jin, Y., Mou, J., et al.: Over 1.1 kV breakdown low turn-on voltage GaN-on-Si power diode with MIS-gated hybrid anode. In: IEEE Internatinal Symposium on Power Semiconductor Devices and IC’s, pp. 369–372 (2015)Google Scholar
  18. 18.
    Chen, W., Wong, K., Chen, K.J.: Single-chip boost converter using monolithically integrated AlGaN/GaN lateral field-effect rectifier and normally-off HEMT. IEEE Electron Device Lett. 30, 430–432 (2009)CrossRefGoogle Scholar
  19. 19.
    Chen, W., Wong, K., Huang, W., et al.: High performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors. Appl. Phys. Lett. 92, 253501 (2008)Google Scholar
  20. 20.
    Zhou, C., Chen, W., Piner, E.L., et al.: Schottky-ohmic drain AlGaN/GaN normally off HEMT with reverse drain blocking capability. IEEE Electron Device Lett. 31, 668–670 (2010)CrossRefGoogle Scholar
  21. 21.
    Synopsys, Inc.: Sentaurus device user guide. 315–326 in Chapter 12, 344–351 in Chapter 13, 687–690 in Chapter 27 (2010). https://solvnet.synopsys.com
  22. 22.
    Si, J., Wei, J., Chen, W., et al.: Electric field distribution around drain-side gate edge in AlGaN/GaN HEMTs: analytical approach. IEEE Trans. Electron Devices 60, 3223–3229 (2013)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Zhang, B., Chen, W., et al.: A closed-form charge control model for the threshold voltage of depletion-and enhancement-mode AlGaN/GaN devices. IEEE Trans. Electron Devices 60, 1607–1612 (2013)CrossRefGoogle Scholar
  24. 24.
    Dutta, G., Turuvekere, S., Karumuri, N., et al.: Positive shift in threshold voltage for reactive-ion-sputtered Al\(_{\rm {2}}\)O\(_{\rm {3}}\)/AlInN/GaN MIS-HEMT. IEEE Electron Device Lett. 35, 1085–1087 (2014)CrossRefGoogle Scholar
  25. 25.
    Ibbetson, J.P., Fini, P.T., Ness, K.D., et al.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)CrossRefGoogle Scholar
  26. 26.
    Chen, W., Zhang, J., Wang, Z., et al.: Investigation of device geometry-and temperature-dependent characteristics of AlGaN/GaN lateral field-effect rectifier. Semicond. Sci. Technol. 28, 015021 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yijun Shi
    • 1
  • Wanjun Chen
    • 1
    • 2
  • Fangzhou Wang
    • 1
  • Jie Liu
    • 1
  • Xingtao Cui
    • 1
  • Guanhao Hu
    • 1
  • Chao Liu
    • 1
  • Zhaoji Li
    • 1
  • Qi Zhou
    • 1
  • Bo Zhang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
  2. 2.Institute of Electronic and Information Engineering of UESTC in GuangdongDongguanChina

Personalised recommendations