Design rules for threshold switches based on a field triggered thermal runaway mechanism

  • Carsten Funck
  • Susanne Hoffmann-Eifert
  • Sebastian Lukas
  • Rainer Waser
  • Stephan Menzel
S.I.: Computational Electronics of Emerging Memory Elements

Abstract

We investigate a new type of threshold switching devices, which is based on a purely electronic phenomena. These threshold switches are polarity independent and switch abruptly from a high resistive state to a low resistive state at a threshold voltage. The device stays in this low resistive state as long as a high voltage drops over the device. When the voltage is reduced, the low resistive state is lost and the device switches back to the initial high resistive state. This makes these threshold switches highly interesting as selector elements for resistive switching memory concepts, based on device arrays, which are the prerequisite for new applications like logic-in-memory concepts. The threshold switching considered here is based on a combination of a Poole–Frenkel conduction mechanism and Joule heating. Hence, it is not strongly restricted to specific materials rather it is connected to the physical quantities of the Poole–Frenkel conduction mechanism and the thermal conductance. This enables to design the threshold switch to its application requirements by adjusting the relevant physical material properties or designing the device geometry. Here we present a theoretical study, which tackles the influence of several material properties and the device design. From this simulation model the impact on technical important figures of merits is determined, such as the threshold switching voltage and the selectivity.

Keywords

Threshold switching RRAM Selector Thermal runaway 

Supplementary material

10825_2017_1061_MOESM1_ESM.pdf (118 kb)
Supplementary material 1 (pdf 118 KB)

References

  1. 1.
    Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13 (2013)CrossRefGoogle Scholar
  2. 2.
    Burr, G., Shenoy, R., Virwani, K., Narayanan, P., Padilla, A., Kurdi, B., Hwang, H.: Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32(4), 040802 (2014)CrossRefGoogle Scholar
  3. 3.
    Pickett, M.D., Borghetti, J., Yang, J.J., Medeiros-Ribeiro, G.: Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23(15), 1730+ (2011)CrossRefGoogle Scholar
  4. 4.
    Rupp, J.A.J., Waser, R., Wouters, D.J.: Threshold Switching in Amorphous Cr-doped Vanadium Oxide for New Crossbar Selector. In: 2016 IEEE 8th International Memory Workshop (IMW), ed. by IEEE. Institut fr Werkstoffe der Elektrotechnik II (IWE II) RWTH Aachen (IEEE Xplore, 2016), p. 4Google Scholar
  5. 5.
    Wang, Y., Shi, X., Zhao, K., Xie, G., Huang, S., Zhang, L.: Controllable resistive switching in Au/Nb:SrTiO3 microscopic Schottky junctions. Appl. Surf. Sci. 364, 718 (2016)CrossRefGoogle Scholar
  6. 6.
    Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833 (2007)CrossRefGoogle Scholar
  7. 7.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)CrossRefGoogle Scholar
  8. 8.
    Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632 (2009)CrossRefGoogle Scholar
  9. 9.
    Linn, E., Rosezin, R., Kgeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403 (2010)CrossRefGoogle Scholar
  10. 10.
    Siemon, A., Breuer, T., Aslam, N., Ferch, S., Kim, W., van den Hurk, J., Rana, V., Hoffmann-Eifert, S., Waser, R., Menzel, S., Linn, E.: Realization of Boolean logic functionality using redox-based memristive devices. Adv. Funct. Mater. 25(40), 6414–6423 (2015)CrossRefGoogle Scholar
  11. 11.
    Zhang, L., Cosemans, S., Wouters, D., Groeseneken, G., Jurczak, M., Govoreanu, B., Trans, I.E.E.E.: On the optimal ON/OFF resistance ratio for resistive switching element in one-selector one-resistor crosspoint arrays. Electron Devices Lett. 62(10), 3250 (2015)CrossRefGoogle Scholar
  12. 12.
    Pickett, M.D., Williams, R.S.: Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23(21), 215202 (2012)CrossRefGoogle Scholar
  13. 13.
    Cha, E., Woo, J., Lee, D., Lee, S., Song, J., Koo, Y., Lee, J., Park, C.G., Yang, M.Y., Kamiya, K., Shiraishi, K., Magyari-Kope, B., Nishi, Y., Hwang, H.: Nanoscale (  10nm) 3D vertical ReRAM and Nb\(\text{O}_2\) threshold selector with TiN electrode. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.5.1–10.5.4 (2013)Google Scholar
  14. 14.
    Nandi, S.K., Liu, X., Venkatachalam, D.K., Elliman, R.G.: Self-assembly of an Nb\(\text{ O }_2\) interlayer and configurable resistive switching in Pt/Nb/Hf\(\text{ O }_2\)/Pt structures. Appl. Phys. Lett. 107(13), 132901/1 (2015)CrossRefGoogle Scholar
  15. 15.
    Wylezich, H., Maehne, H., Rensberg, J., Ronning, C., Zahn, P., Slesazeck, S., Mikolajick, T., Appl, A.C.S.: Local ion irradiation-induced resistive threshold and memory switching in N\(\text{ b }_2 \text{ O }_5\)/Nb\(\text{ O }_x\) films. Mater. Interfaces 6(20), 17474 (2014)CrossRefGoogle Scholar
  16. 16.
    Liu, X., Nandi, S.K., Venkatachalam, D.K., Belay, K., Song, S., Elliman, R.G.: Reduced threshold current in Nb\(\text{ O }_2\) selector by engineering device structure. IEEE Electron Device Lett. 35(10), 1055 (2014)CrossRefGoogle Scholar
  17. 17.
    Liu, X., Sadaf, S.M., Son, M., Shin, J., Park, J., Lee, J., Park, S., Hwang, H.: Diode-less bilayer oxide (W\(\text{ O }_x\) – Nb\(\text{ O }_x\)) device for cross-point resistive memory applications. Nanotechnology 22, 475702/1 (2011)Google Scholar
  18. 18.
    Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., Lee, W., Kim, S., Park, S., Hwang, H.: Excellent selector characteristics of nanoscale V\(\text{ O }_2\) for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 32(11), 1579 (2011)CrossRefGoogle Scholar
  19. 19.
    Vos, M., Liu, X., Grande, P.L., Nandi, S.K., Venkatachalam, D.K., Elliman, R.G.: The use of electron rutherford backscattering to characterize novel electronic materials as illustrated by a case study of sputter-deposited nbox films. http://dx.doi.org/10.1016/j.nimb.2014.06.024 (2014)
  20. 20.
    Chudnovskii, F.A., Odynets, L.L., Pergament, A.L., Stefanovich, G.B.: Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism. J. Solid State Chem. 122(1), 95 (1996)CrossRefGoogle Scholar
  21. 21.
    Liu, X., Li, S., Nandi, S.K., Venkatachalam, D.K., Elliman, R.G.: Threshold switching and electrical self-oscillation in niobium oxide films. J. Appl. Phys. 120(12), 124102/1 (2016)Google Scholar
  22. 22.
    Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ’Memristive’ switches enable ’stateful’ logic operations via material implication. Nature 464(7290), 873 (2010)CrossRefGoogle Scholar
  23. 23.
    Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: IEEE Trans Circuits Syst. II Express Briefs. MAGIC-memristor-aided logic 61(11), 895 (2014)Google Scholar
  24. 24.
    Li, S., Liu, X., Nandi, S.K., Venkatachalam, D.K., Elliman, R.G.: Coupling dynamics of Nb/N\(\text{ b }_2 \text{ O }_5\) relaxation oscillators. Nanotechnology 28, 125201 (2017)CrossRefGoogle Scholar
  25. 25.
    Funck, C., Menzel, S., Aslam, N., Zhang, H., Hardtdegen, A., Waser, R., Hoffmann-Eifert, S.: Multidimensional simulation of threshold switching in Nb\(\text{ O }_2\) based on an electric field triggered thermal runaway model. Adv. Electron. Mater. 2(7), 1600169/1 (2016)CrossRefGoogle Scholar
  26. 26.
    Slesazeck, S., Maehne, H., Wylezich, H., Wachowiak, A., Radhakrishnan, J., Ascoli, A.: Physical model of threshold switching in Nb\(\text{ O }_2\) based memristor. RSC Adv. 5, 102318 (2015)CrossRefGoogle Scholar
  27. 27.
    Funck, C., Hoffmann-Eifert, S., Waser, R., Menzel, S.: Simulation of threshold switching based on an electric field induced thermal runaway. In: 2016 International Conference On Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, September 6–8, 2016 (2016 International Conference On Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, September 6–8, 2016, 2016), pp. 319–322Google Scholar
  28. 28.
    Slesazeck, S., Herzig, M., Mikolajick, T., Ascoli, A., Weiher, M., Tetzlaff, R.: Analysis of Vth variability in Nb\(\text{ O }_x\)-based threshold switches. In: 16th Non-Volatile Memory Technology Symposium (NVMTS), Carnegie Mellon Univ, Pittsburgh, PA (2016 16th Non-Volatile Memory Technology Symposium (nvmts)) (2016)Google Scholar
  29. 29.
    Gibson, G.A., Musunuru, S., Zhang, J., Vandenberghe, K., Lee, J., Hsieh, C.C., Jackson, W., Jeon, Y., Henze, D., Li, Z., Williams, R.S.: An accurate locally active memristor model for S-type negative differential resistance in Nb\(\text{ O }_x\). Appl. Phys. Lett. 108(2), 23505/1 (2016)CrossRefGoogle Scholar
  30. 30.
    Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647 (1938)Google Scholar
  31. 31.
    Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D., Noh, T.W.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102(2), 26801/1 (2009)CrossRefGoogle Scholar
  32. 32.
    Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Kim, J.S., Choi, J.S., Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85(23), 5655 (2004)CrossRefGoogle Scholar
  33. 33.
    Huang, Y., Huang, R., Cai, Y., Wu, H., Yue, P., Zhang, Y., Chen, C., Wang, Y.: A Ta\(\text{ O }_x\) based threshold switching selector for the RRAM crossbar array memory. In: Non-Volatile Memory Technology Symposium (NVMTS), pp. 85–87 (2012)Google Scholar
  34. 34.
    Gallo, M.L., Athmanathan, A., Krebs, D., Sebastian, A.: Evidence for thermally assisted threshold switching behaviour in nanoscale phase-change memory cells. J. Appl. Phys. 119, 025704 (2016)CrossRefGoogle Scholar
  35. 35.
    Aluguri, R., Tseng, T.Y.: Overview of selector devices for 3-D stackable cross point RRAM arrays. IEEE J. Electron Devices Soc. 4, 294 (2016)CrossRefGoogle Scholar
  36. 36.
    Jo, S.H., Kumar, T.: Resistive random access memory for storage class applications. ECS Trans. 69(3), 47 (2015)CrossRefGoogle Scholar
  37. 37.
    Narayanan, P., Burr, G., Shenoy, R., Stephens, S., Virwani, K., Padilla, A., Kurdi, B.N., Gopalakrishnan, K.: Exploring the design space for crossbar arrays built with mixed-ionic-electronic-conduction (MIEC) access devices. IEEE J. Electron Devices Soc. 3(5), 423 (2015)CrossRefGoogle Scholar
  38. 38.
    Schroeder, H.: Poole–Frenkel-effect as dominating current mechanism in thin oxide films—an illusion?!. J. Appl. Phys. 117, 215103 (2015)CrossRefGoogle Scholar
  39. 39.
    Goodwill, J.M., Sharma, A.A., Li, D., Bain, J.A., Skowronski, M.: Electro-thermal model of threshold switching in Ta\(\text{ O }_x\)-based devices. ACS Appl. Mater. Interfaces 9, 11704 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Carsten Funck
    • 1
  • Susanne Hoffmann-Eifert
    • 2
  • Sebastian Lukas
    • 1
  • Rainer Waser
    • 1
  • Stephan Menzel
    • 2
  1. 1.Institut für Werkstoffe der Elektrotechnik IIRWTH Aachen UniversityAachenGermany
  2. 2.Peter Grünberg Institut, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations