Journal of Computational Electronics

, Volume 16, Issue 4, pp 997–1002 | Cite as

Grüneisen parameters and thermal conductivity in the phase change compound GeTe

  • Emanuele Bosoni
  • Gabriele Cesare Sosso
  • Marco BernasconiEmail author
S.I.: Computational Electronics of Emerging Memory Elements


Thermal conductivity is one of the key properties for the application of phase change materials in nonvolatile memories. In this work we compute the mode Grüneisen parameters of the phase change compound GeTe by means of density-functional perturbation theory. The Grüneisen parameters are then used to estimate the bulk thermal conductivity with a phenomenological formula (Slack in Solid State Phys 34:1–71, 1979). This estimate is compared with the full solution of the Boltzmann Transport Equation we obtained in a previous work within the same theoretical framework. This comparison allowed us to validate the phenomenological formula also for the prototypical phase change compound GeTe.


Phase change materials Phonons Density-functional theory Thermal conductivity 



MB acknowledges funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant agreement No. 310339 and computational resources provided by Cineca (Casalecchio di Reno, Italy) through the ISCRA initiative.


  1. 1.
    Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S.: Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, A.: A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron. 125, 25–38 (2016)CrossRefGoogle Scholar
  3. 3.
    Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron. Dev. 51, 452–459 (2004)CrossRefGoogle Scholar
  4. 4.
    Lacaita, A.L., Wouters, D.J.: Phase-change memories. Phys. Stat. Sol. A 205, 2281–2297 (2008)CrossRefGoogle Scholar
  5. 5.
    Wuttig, M., Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  6. 6.
    Ghezzi, G.E., Raty, J.Y., Maitrejean, S., Roule, A., Elkaim, E., Hippert, F.: Effect of carbon doping on the structure of amorphous GeTe phase change material. Appl. Phys. Lett. 99, 151906–151908 (2011)CrossRefGoogle Scholar
  7. 7.
    Reifenberg, J.P., Kencke, D.L., Goodson, K.E.: The impact of thermal boundary resistance in phase-change memory devices. IEEE Electron Dev. Lett. 29, 1112–1114 (2008)CrossRefGoogle Scholar
  8. 8.
    Bozorg-Grayeli, E., Reifenberg, J.P., Asheghi, M., Wong, H.S.P., Goodson, K.E.: Thermal transport in phase change memory materials. Ann. Rev. Heat Transf. 16, 397–428 (2013)CrossRefGoogle Scholar
  9. 9.
    Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)CrossRefGoogle Scholar
  10. 10.
    Debernardi, A., Baroni, S., Molinari, E.: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819–1822 (1995)CrossRefGoogle Scholar
  11. 11.
    Lazzeri, M., de Gironcoli, S.: First-principles study of the thermal expansion of Be(\(10\bar{1}0\)). Phys. Rev. B 65, 245402–245409 (2002)CrossRefGoogle Scholar
  12. 12.
    Deinzer, G., Birner, G., Strauch, D.: Ab initio calculation of the linewidth of various phonon modes in germanium and silicon. Phys. Rev. B 67, 144304–144309 (2003)CrossRefGoogle Scholar
  13. 13.
    Paulatto, L., Mauri, F., Lazzeri, M.: Anharmonic properties from a generalized third-order ab initio approach: theory and applications to graphite and graphene. Phys. Rev. B 87, 214303–214320 (2013)CrossRefGoogle Scholar
  14. 14.
    Fugallo, G., Lazzeri, M., Paulatto, L., Mauri, F.: Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 88, 045430–045438 (2013)Google Scholar
  15. 15.
    Campi, D., Paulatto, L., Fugallo, G., Mauri, F., Bernasconi, M.: First-principles calculation of lattice thermal conductivity in crystalline phase change materials: GeTe, \(\text{ Sb }_2\text{ Te }_3\), and \(\text{ Ge }_2\text{ Sb }_2\text{ Te }_5\). Phys. Rev. B 95, 024311–024322 (2017)CrossRefGoogle Scholar
  16. 16.
    Slack, G.A.: The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979)CrossRefGoogle Scholar
  17. 17.
    Morelli, D.T., Slack, G.A.: High lattice thermal conductivity solids. In: Shinde, S.L., Goela, J. (eds.) High Thermal Conductivity Materials, p. 36. Springer, Berlin (2016). ISBN-10: 0-387-22021-6Google Scholar
  18. 18.
    Morelli, D.T., Jovovic, V., Heremans, J.P.: Intrinsically minimal thermal conductivity in cubic I–V–VI2 semiconductors. Phys. Rev. Lett. 101, 035901–035904 (2008)CrossRefGoogle Scholar
  19. 19.
    Siegert, K.S., Lange, F.R.L., Sittner, E.R., Volker, H., Schlockermann, C., Siegrist, T., Wuttig, M.: Impact of vacancy ordering on thermal transport in crystalline phase-change materials. Rep. Prog. Phys. 78, 013001–013012 (2015)CrossRefGoogle Scholar
  20. 20.
    Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502–395520 (2009).
  21. 21.
    Shaltaf, R., Gonze, X., Cardona, M., Kremer, R.K., Siegle, G.: Lattice dynamics and specific heat of \(\alpha \)-GeTe: theoretical and experimental study. Phys. Rev. B 79, 075204–075210 (2009)CrossRefGoogle Scholar
  22. 22.
    Monkhorst, H., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Goldak, J., Barrett, C.S., Innes, D., Youdelis, W.: Structure of \(\alpha \)-GeTe. J. Chem. Phys. 44, 3323–3325 (1966)CrossRefGoogle Scholar
  24. 24.
    Chattopadhyay, T., Boucherle, J., Von Schnering, H.: Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C 20, 1431–1440 (1987)CrossRefGoogle Scholar
  25. 25.
    Lucovsky, G., White, R.M.: Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973)CrossRefGoogle Scholar
  26. 26.
    Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., Wuttig, M.: Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008)CrossRefGoogle Scholar
  27. 27.
    Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M.: A map for phase-change materials. Ibid. Nat. Mater. 7, 972–977 (2008)CrossRefGoogle Scholar
  28. 28.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  29. 29.
    Edwards, A.H., Pineda, A.C., Schultz, P.A., Martin, M.G., Thompson, A.P., Hjalmarson, H.P., Umrigar, C.J.: Electronic structure of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 73, 045210–045222 (2006)CrossRefGoogle Scholar
  30. 30.
    Bevolo, A.J., Shanks, H.R., Eckels, D.E.: Molar heat capacity of GeTe, SnTe, and PbTe from 0.9 to 60 K. Phys. Rev. B 13, 3523–3533 (1976)CrossRefGoogle Scholar
  31. 31.
    Campi, D., Donadio, D., Sosso, G.C., Behler, J., Bernasconi, M.: Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe. J. Appl. Phys. 117, 015304–015312 (2015)CrossRefGoogle Scholar
  32. 32.
    Voc̆adlo, N.L., Price, G.D.: The Grüneisen parameter—computer calculations via lattice dynamics. Phys. Earth Planet. Inter. 82, 261 (1994)CrossRefGoogle Scholar
  33. 33.
    Domb, C., Salter, L.: CIX. The zero point energy and \(\Theta \) crystals. Philos. Mag. 43, 1083–1089 (1952)CrossRefGoogle Scholar
  34. 34.
    Fallica, R., Varesi, E., Fumagalli, L., Spadoni, S., Longo, M.: Effect of nitrogen doping on the thermal conductivity of GeTe thin films. Phys. Status Solidi RRL 7, 1107–1111 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienza dei MaterialiUniversità di Milano-BicoccaMilanItaly
  2. 2.School of Physics and CRANNTrinity College DublinDublin 2Ireland
  3. 3.Thomas Young Center and Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations