Advertisement

Journal of Computational Electronics

, Volume 16, Issue 3, pp 542–547 | Cite as

Investigation of electronic structure and half-metallic ferromagnetic behavior with large half-metallic gap in \(\hbox {Sr}_{1-x}\hbox {V}_{x}\hbox {O}\)

  • Mohamed Berber
  • Bendouma Doumi
  • Allel Mokaddem
  • Yesim Mogulkoc
  • Adlane Sayede
  • Abdelkader Tadjer
Article

Abstract

In this study, we investigate the electronic structure and magnetic properties of V-doped rock-salt SrO as a \(\hbox {Sr}_{1-x}\hbox {V}_{x}\hbox {O}\) ternary compound at concentration \(x = 0.25\) by the use of first-principle calculations of density functional theory using the full potential linearized augmented plane wave method. The electronic structures of \(\hbox {Sr}_{0.75}\hbox {V}_{0.25}\hbox {O}\) have a half-metallic character due to the metallic nature of majority-spin states and semiconducting features of minority-spin states. From results of the magnetic properties, we have found that the \(\hbox {Sr}_{0.75}\hbox {V}_{0.25}\hbox {O}\) has a total magnetic moment of \(3\,\mu _{\mathrm{B}}\) and the pd exchange coupling is ferromagnetic between V magnetic impurity and the host carriers of O atoms. The \(\hbox {Sr}_{0.75}\hbox {V}_{0.25}\hbox {O}\) compound exhibits a wide half-metallic gap of 1.00 eV; this factor is a fundamental characteristic of half-metallic ferromagnetic materials for spintronics applications.

Keywords

Electronic properties pd Exchange interaction Magnetic moments Half-metallic ferromagnetism 

References

  1. 1.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)CrossRefGoogle Scholar
  2. 2.
    Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
  3. 3.
    Sato, K., Katayama-Yoshida, H.: Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 40, L485–L487 (2001)CrossRefGoogle Scholar
  4. 4.
    Wu, S.Y., Liu, H.X., Gu, L., Singh, R.K., Budd, L., van Schilfgaarde, M., McCartney, M.R., Smith, D.J., Newman, N.: Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films. Appl. Phys. Lett. 82, 3047–3049 (2003)CrossRefGoogle Scholar
  5. 5.
    Kaminska, M., Twardowski, A., Wasik, D.: Mn and other magnetic impurities in GaN and other III–V semiconductors—perspective for spintronic applications. J. Mater. Sci.: Mater. Electron. 19, 828–834 (2008)Google Scholar
  6. 6.
    Noguera, C.: Physics and chemistry of oxides surface. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Bukowinski, M.S.T.: Modified potential-induced-breathing model of potentials between close-shell ions. Phys. Rev. B 44, 2495 (1991)CrossRefGoogle Scholar
  8. 8.
    Baltache, H., Khenata, R., Sahnoun, M., Driz, M., Abbar, B., Bouhafs, B.: Full potential calculation of structural, electronic and elastic properties of alkaline earth oxides MgO, CaO and SrO. Physica B 344, 334 (2004)CrossRefGoogle Scholar
  9. 9.
    Bhardwaj, P., Singh, S., Gaur, N.K.: Structural, elastic and thermophysical properties of divalent metal oxides with NaCl structure. Mater. Res. Bull. 44, 1366–1374 (2009)CrossRefGoogle Scholar
  10. 10.
    Souadkia, M., Bennecer, B., Kalarasse, F.: Ab initio lattice dynamics and thermodynamic properties of SrO under pressure. J. Phys. Chem. Solids 73, 129–135 (2012)CrossRefGoogle Scholar
  11. 11.
    Sato, Y., Jeanloz, R.: Phase transition in SrO. Geophys. Res. 86, 11773–11778 (1981)CrossRefGoogle Scholar
  12. 12.
    Berri, S., Kouriche, A., Maouche, D., Zerarga, F., Attallah, M.: Ab initio study of electronic structure and magnetic properties in ferromagnetic Sr\(_{1-x}\)(Mn, Cr)\(_x\)O alloys. Mater. Sci. Semicond. Proc. 38, 101–106 (2015)Google Scholar
  13. 13.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN 2K. An augmented plane wave + local orbitals program for calculating crystal properties. In: Schwarz, K. (ed.) Techn. Universität, Wien, Austria (2001)Google Scholar
  14. 14.
    Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116-6 (2006)Google Scholar
  15. 15.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–871 (1964)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–1138 (1965)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillonin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pack, J.D., Monkhorst, H.J.: “Special points for Brillonln-zone integrations”—a reply. Phys. Rev. B 16, 1748–1749 (1977)CrossRefGoogle Scholar
  19. 19.
    Muranghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, L.G., Bassett, W.A.: Changes of the crystal structure and the lattice parameter of SrO at high pressure. J. Geophys. Res. 78, 8470–8473 (1973)CrossRefGoogle Scholar
  21. 21.
    Gao, G.Y., Yao, K.L., Şaşıoğlu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B 75, 174442 (2007). (7pp)CrossRefGoogle Scholar
  22. 22.
    Doumi, B., Mokaddem, A., Ishak-Boushaki, M., Bensaid, D.: First-principle investigation of magnetic and electronic properties of vanadium- and chromium-doped cubic aluminum phosphide. Sci. Semicond. Process. 32, 166–171 (2015)Google Scholar
  23. 23.
    Doumi, B., Mokaddem, A., Sayede, A., Dahmane, F., Mogulkoc, Y., Tadjer, A.: First-principles investigations on ferromagnetic behaviour of \(\text{ Be }_{1-x}\text{ V }_{{x}}\text{ Z }\) (Z = S, Se and Te) (\(x\) = 0.25). Superlattices Microstruct. 88, 139–149 (2015)CrossRefGoogle Scholar
  24. 24.
    Doumi, B., Mokaddem, A., Dahmane, F., Sayede, A., Tadjer, A.: A novel theoretical design of electronic structure and half-metallic ferromagnetism in the 3d (V)-doped rock-salts SrS, SrSe, and SrTe for spintronics. RSC Adv. 112, 92328–92334 (2015)CrossRefGoogle Scholar
  25. 25.
    Labidi, M., Labidi, S., Ghemid, S., Meradji, H., El Haj Hassan, F.: Structural, electronic, thermodynamic and optical properties of alkaline earth oxides MgO, SrO and their alloys. Phys. Scr. 82, 045605 (2010)CrossRefGoogle Scholar
  26. 26.
    Zollweg, R.J.: Optical absorption and photoemission of barium and strontium oxides, sulmes, selenides and tellurides. Phys. Rev. 111, 113–119 (1958)CrossRefGoogle Scholar
  27. 27.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  28. 28.
    Doumi, B., Mokaddem, A., Temimi, L., Beldjoudi, N., Elkeurti, M., Dahmane, F., Sayede, A., Tadjer, A., Ishak-Boushaki, M.: First-principle investigation of half-metallic ferromagnetism in octahedrally bonded Cr-doped rock-salt SrS, SrSe, and SrTe. Eur. Phys. J. B 88, 93 (2015)CrossRefGoogle Scholar
  29. 29.
    Sato, K., Dederichs, P.H., Araki, K., Katayama-Yoshida, H.: Ab initio materials design and Curie temperature of GaN-based ferromagnetic semiconductors. Phys. Status Solidi C 7, 2855–2859 (2003)CrossRefGoogle Scholar
  30. 30.
    Akai, H.: Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys. Rev. Lett. 81, 3002–3005 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Centre Universitaire Nour Bachir El BayadhEl BayadhAlgeria
  2. 2.Faculty of Sciences, Department of PhysicsDr. Tahar Moulay University of SaidaSaidaAlgeria
  3. 3.Theoretical Physics LaboratoryU.S.T.H.B.AlgiersAlgeria
  4. 4.Faculty of Engineering, Department of Engineering PhysicsAnkara UniversityTandoganTurkey
  5. 5.Unité de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Faculté des SciencesUniversité d’ArtoisLensFrance
  6. 6.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel AbbèsAlgeria

Personalised recommendations