Advertisement

Journal of Computational Electronics

, Volume 16, Issue 3, pp 514–525 | Cite as

An improved model for the \({I{-}V}\) characteristics of submicron SiC MESFETs by evaluating the potential distribution inside the channel

  • M. M. Ahmed
  • M. Riaz
  • U. F. Ahmed
Article

Abstract

This paper presents a detailed mathematical model describing the \(I{-}V\) characteristics of submicron SiC MESFETs. Poisson’s equation with appropriate boundary conditions has been solved to determine the potential distribution inside the channel. The location (\(L_1\)) of the Schottky barrier gate with a corresponding depletion layer width (\(u_1\)) where the carrier’s velocity gets saturated has been evaluated. It has been demonstrated that, both \(L_1\) and \(u_1\) are bias dependent, and their values change by changing the drain biasing even after the onset of current saturation. This causes a modification in the depletion layer underneath the Schottky barrier gate and, thus, changes the available channel cross-section for the flow of current. It has been shown that finite output conductance in the saturation region of operation, which is usually observed in submicron devices, can be explained with Schottky barrier depletion layer modification. The \(I{-}V\) characteristics of submicron SiC MESFET are modeled and compared with conventional velocity saturation techniques, where the depletion layer after the onset of current saturation has been treated as a constant. It is observed that the proposed technique gave \(\sim \)15.9% improvement in the modeled characteristics of a submicron SiC MESFET.

Keywords

SiC MESFET Analytical model Velocity saturation \({I{-}V}\) characteristics Channel potential 

References

  1. 1.
    Mahabadi, S.E.J., Moghadam, H.A.: Comprehensive study of a 4H–SiC MES–MOSFET. Physica E Low Dimens. Syst. Nanostruct. 74, 25–29 (2015)CrossRefGoogle Scholar
  2. 2.
    Ahmed, M.M.: An improved method to estimate intrinsic small signal parameters of a GaAs MESFET from measured DC characteristics. IEEE Trans. Electron Devices 50(11), 2196–2201 (2003)CrossRefGoogle Scholar
  3. 3.
    Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)CrossRefGoogle Scholar
  4. 4.
    Saremi, M., Afzali-Kusha, A., Mohammadi, S.: Ground plane fin-shaped field effect transistor GP-FinFET: a FinFET for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012)CrossRefGoogle Scholar
  5. 5.
    Ahmed, M.M.: Effects of active-channel thickness on submicron GaAs metal semiconductor field-effect transistor characteristics. J. Vac. Sci. Technol. B 16(3), 968–971 (1998)CrossRefGoogle Scholar
  6. 6.
    Ahmed, M.M., Ahmed, H., Ladbrooke, P.H.: Effects of interface states on submicron GaAs metal-semiconductor field-effect transistors assessed by gate leakage current. J. Vac. Sci. Technol. B 13(4), 1519–1525 (1995)CrossRefGoogle Scholar
  7. 7.
    Ahmed, M.M.: Compression in transconductance at low gate voltages in submicron GaAs metal semiconductor field-effect transistors. J. Vac. Sci. Technol. B 15(6), 2052–2056 (1997)CrossRefGoogle Scholar
  8. 8.
    Khemissi, S., Azizi, C.: A two-dimensional analytical modeling of the current-voltage characteristics for submicron gate-length GaAs MESFETs. Int. J. Eng. Technol. 12, 27 (2012)Google Scholar
  9. 9.
    Caughey, D.M., Thomas, R.E.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)CrossRefGoogle Scholar
  10. 10.
    Mnatsakanov, T.T., Levinshtein, M.E., Pomortseva, L.I., Yurkov, S.N.: Carrier mobility model for simulation of SiC-based electronic devices. Semicond. Sci. Technol. 17(9), 974–977 (2002)CrossRefGoogle Scholar
  11. 11.
    Lu, H., Zhang, Y., Zhang, Y., Zhang, T.: A comprehensive model of frequency dispersion in 4H-SiC MESFET. Solid State Electron. 53(3), 285–291 (2009)CrossRefGoogle Scholar
  12. 12.
    Khan, I.A., Cooper, J.A.: Measurement of high-field electron transport in silicon carbide. IEEE Trans. Electron Devices 47(2), 269–273 (2000)CrossRefGoogle Scholar
  13. 13.
    Lv, H., Zhang, Y., Zhang, Y., Yang, L.A.: Analytic model of I-V characteristics of 4H–SiC MESFETs based on multiparameter mobility model. IEEE Trans. Electron Devices 51(7), 1065–1068 (2004)CrossRefGoogle Scholar
  14. 14.
    Bertilsson, K., Nilsson, H.E., Hjelm, M., Petersson, C.S., Käckell, P., Persson, C.: The effect of different transport models in simulation of high frequency 4H–SiC and 6H–SiC vertical MESFETs. Solid State Electron. 45(5), 645–653 (2001)CrossRefGoogle Scholar
  15. 15.
    Roschke, M., Schwierz, F.: Electron mobility models for 4H, 6H, and 3C SiC MESFETs. IEEE Trans. Electron Devices 48(7), 1442–1447 (2001)CrossRefGoogle Scholar
  16. 16.
    Ladbrooke, P.H.: MMIC Design: GaAs FETs and HEMTs. Artech House, Boston (1989)Google Scholar
  17. 17.
    Zhu, C.L., Rusli, Tin, C.C., Yoon, S.F., Ahn, J.: A three-region analytical model for short-channel SiC MESFETs. Microelectron. Eng. 83(1), 96–99 (2006)CrossRefGoogle Scholar
  18. 18.
    Tsap, B.: Silicon carbide microwave field-effect transistor: effect of field dependent mobility. Solid State Electron. 38(6), 1215–1219 (1995)CrossRefGoogle Scholar
  19. 19.
    Lakhdar, N., Djeffal, F.: A two-dimensional analytical model of subthreshold behavior to study the scaling capability of deep submicron double-gate GaN-MESFETs. J. Comput. Electron. 10(4), 382–387 (2011)CrossRefGoogle Scholar
  20. 20.
    Chang, C.S., Day, D.Y.S.: Analytic theory for current–voltage characteristics and field distribution of GaAs MESFET’s. IEEE Trans. Electron Devices 36(2), 269–280 (1989)CrossRefGoogle Scholar
  21. 21.
    Murray, S.P., Roenker, K.P.: An analytical model for SiC MESFETs. Solid State Electron. 46(10), 1495–1505 (2002)CrossRefGoogle Scholar
  22. 22.
    Enoki, T., Sugitani, S., Yamane, Y.: Characteristics including electron velocity overshoot for 0.1-\(\mu \)m-gate-length GaAs SAINT MESFET’s. IEEE Trans. Electron Devices 37(4), 935–941 (1990)Google Scholar
  23. 23.
    Chun, C.: Iterative methods improving newton’s method by the decomposition method. Comput. Math. Appl. 50(10), 1559–1568 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wang, X., Qin, Y., Qian, W., Zhang, S., Fan, X.: A family of newton type iterative methods for solving nonlinear equations. Algorithms 8(3), 786–798 (2015)Google Scholar
  25. 25.
    Ahmed, M.M.: Schottky barrier depletion modification-a source of output conductance in submicron GaAs MESFETs. IEEE Trans. Electron Devices 48(5), 830–834 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCapital University of Science and Technology (CUST)IslamabadPakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations