Journal of Computational Electronics

, Volume 16, Issue 3, pp 556–567 | Cite as

Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor

  • Avik Chakraborty
  • Angsuman Sarkar


An analytical model of dielectric-modulated junctionless gate-stack surrounding gate MOSFET for application as a biosensor is presented. An expression for the channel-center potential is obtained by solving the 2-D Poisson’s equation using a parabolic-potential approach. An analytical model for the threshold voltage is developed from the minimum channel-center potential to analyze the sensitivity of the biosensor. Moreover, the effects of the variation of the different device dimensional parameters on the sensitivity of the biosensor were investigated in order to study the dielectric modulation effects due to the permittivity changes by the biomolecules present within the nanogap cavity. The analytical model is verified and validated with the help of TCAD device simulations.


Biosensors Junctionless Surrounding gate MOSFET Channel-center potential Analytical model Threshold voltage 


  1. 1.
    Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)CrossRefGoogle Scholar
  2. 2.
    Wenga, G., Jacques, E., Salaun, A.-C., et al.: Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens. Bioelectron. 40(1), 141–146 (2013)CrossRefGoogle Scholar
  3. 3.
    Guan, W., Duan, X., Reed, M.A.: Highly specific and sensitive nonenzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosens. Bioelectron. 51, 225–231 (2014)CrossRefGoogle Scholar
  4. 4.
    Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J.B., Han, M.H., Snyder, M., Choi, E.Y.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J. 19(10), 13551337 (2005)Google Scholar
  5. 5.
    Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003)CrossRefGoogle Scholar
  6. 6.
    Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.-J., Gerber, Ch., Gimzewski, J.K.: Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000)CrossRefGoogle Scholar
  7. 7.
    Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E., Kim, H.-S.: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sens. Basel Sens. 6(7), 756–782 (2006)CrossRefGoogle Scholar
  8. 8.
    Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanotechnol. Lett. 6(4), 583–586 (2006)Google Scholar
  9. 9.
    Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRefGoogle Scholar
  10. 10.
    Chen, K.I., Li, B.-R., Chen, Y.-T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRefGoogle Scholar
  11. 11.
    Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)CrossRefGoogle Scholar
  12. 12.
    Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., Nie, S.: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)CrossRefGoogle Scholar
  13. 13.
    Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.-K., Cote, R.J., Zhou, C., Thompson, M.E.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)CrossRefGoogle Scholar
  14. 14.
    Syahir, A., Usui, K., Tomizaki, K.-Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4, 228–244 (2015)CrossRefGoogle Scholar
  15. 15.
    Ohno, Y., Maehashi, K., Matsumoto, K.: Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010)CrossRefGoogle Scholar
  16. 16.
    Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, Kaustav: MoS2 field-effect transistor for next-generation label-free biosensors. Acs Nano 8(4), 3992–4003 (2014)CrossRefGoogle Scholar
  17. 17.
    Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)CrossRefGoogle Scholar
  18. 18.
    Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRefGoogle Scholar
  19. 19.
    Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)Google Scholar
  20. 20.
    Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRefGoogle Scholar
  21. 21.
    Kannan, N., Jagadesh Kumar, M.: Dielectric-modulated impact-ionization MOS (DIMOS) transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)CrossRefGoogle Scholar
  22. 22.
    Kannan, N., Kumar, M.J.: Charge-modulated underlap I-MOS transistor as a label-free biosensor: a simulation study. IEEE Trans. Electron Devices 62(8), 26452651 (2015)CrossRefGoogle Scholar
  23. 23.
    Kanungo, S., Gupta, P.S., Rhaman, H.: Effects of Germanium mole fraction variation at the source of a dielectrically modulated Tunneling FET based biosensor. In: 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1–5, 6–8 (2014)Google Scholar
  24. 24.
    Narang, R., Reddy, K.V.S., Saxena, M., Gupta, R.S., Gupta, M.: A Dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10), 2809–2817 (2012)CrossRefGoogle Scholar
  25. 25.
    Chiang, T.-K.: A new quasi-2-D threshold voltage model for short-channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. IEEE Trans. Electron Devices 59(11), 3127–3129 (2012)CrossRefGoogle Scholar
  26. 26.
    Hu, G., Ping, X., Zhihao, D., Ran, L., Lingli, W., Tang, T.-A.: Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61(3), 688–695 (2014)CrossRefGoogle Scholar
  27. 27.
    Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011)CrossRefGoogle Scholar
  28. 28.
    Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Electron Device Lett. 32(6), 704–706 (2011)CrossRefGoogle Scholar
  29. 29.
    Buitrago, E., Giorgos, F., Badia, M.F.B., Georgiev, Y.M., Berthomé, M., Ionescu, A.M.: Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuators B Chem. 183, 1–10 (2013)CrossRefGoogle Scholar
  30. 30.
    Nair, P.R., Alam, M.A.: Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(12), 3400–3408 (2007)CrossRefGoogle Scholar
  31. 31.
    Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)CrossRefGoogle Scholar
  32. 32.
    Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)CrossRefGoogle Scholar
  33. 33.
    Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)CrossRefGoogle Scholar
  34. 34.
    Barik, M.A., Deka, R., Dutta, J.C.: Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sens. J. 16(2), 280–286 (2016)CrossRefGoogle Scholar
  35. 35.
    Liu, K.M., Peng, F.I., Peng, K.P., Lin, H.-C., Huang, T.Y.: The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors. Semicond. Sci. Technol. 29(5), 055001 (2014)CrossRefGoogle Scholar
  36. 36.
    Wilk, G.D., Wallace, R.M., Anthony, J.M.: High-\(\kappa \) gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)CrossRefGoogle Scholar
  37. 37.
    Buchanan, D.A.: Scaling the gate dielectric: materials, integration, and reliability. IBM J. Res. Dev. 43(3), 245–264 (1999)CrossRefGoogle Scholar
  38. 38.
    Poonam, K., Saxena, M., Gupta, R.S.: Modeling and simulation of STacked Gate Oxide (STGO) architecture in silicon-on-nothing (SON) MOSFET. Solid State Electron. 49(10), 1639–1648 (2005)CrossRefGoogle Scholar
  39. 39.
    Lee, C.H., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid State Electron. 54(2), 97–103 (2010)CrossRefGoogle Scholar
  40. 40.
    Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)CrossRefGoogle Scholar
  41. 41.
    Colinge, J.P., Kranti, A., Yan, R., Lee, W., Ferain, I., Yu, R., Dehdashti Akhavan, N., Razavi, P.: unctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)CrossRefGoogle Scholar
  42. 42.
    Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRefGoogle Scholar
  43. 43.
    Rewari, S., Nath, V., Haldar, S., Deswal, S.S., Gupta, R.S.: Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A 122(12), 1049 (2016)CrossRefGoogle Scholar
  44. 44.
    Chanda, M., Dey, P., De, S., Sarkar, C.K.: Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection. Superlattices Microstruct. 86, 446–455 (2015)CrossRefGoogle Scholar
  45. 45.
    Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102(13), 133505 (2013)CrossRefGoogle Scholar
  46. 46.
    Sahay, S., Kumar, M.J.: Realizing efficient volume depletion in SOI junctionless FETs. IEEE J. Electron Devices Soc. 4(3), 110–115 (2016)CrossRefGoogle Scholar
  47. 47.
    Hubbard, K.J., Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11(11), 2757–2776 (1996)CrossRefGoogle Scholar
  48. 48.
    SILVACO Data Systems Inc.: ATLAS User’s Manual Version 5.15.32.R. Silvaco Inc., Santa Clara, CA (2010).
  49. 49.
    Ortiz-Conde, A., Garcia-Sanchez, F.J., Malobabic, S.: Analytic solution of the channel potential in undoped symmetric dual-gate MOSFETs. IEEE Trans. Electron Devices 52(7), 1669–1672 (2005)CrossRefGoogle Scholar
  50. 50.
    Lundstrom, M.S., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)CrossRefGoogle Scholar
  51. 51.
    Ionescu-Zanetti, C., Nevill, J.T., Di Carlo, D., Jeong, K.H., Lee, L.P.: Nanogap capacitors: sensitivity to sample permittivity changes. J. Appl. Phys. 99(2), 024305- (2006)CrossRefGoogle Scholar
  52. 52.
    Offenhäusser, A., Rinaldi, R.: Nanobioelectronics for Electronics, Biology, and Medicine. Springer-Verlag, New York (2009)CrossRefGoogle Scholar
  53. 53.
    Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)CrossRefGoogle Scholar
  54. 54.
    Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field effect transistor—a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)CrossRefGoogle Scholar
  55. 55.
    Kang, H., Han, J.-W., Choi, Y.-K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 92730 (2008)CrossRefGoogle Scholar
  56. 56.
    Dashiell, M.W., Kalambur, A.T., Leeson, R., Roe, K.J., Rabolt, J.F., Kolodzey, J.: The electrical effects of DNA as the gate electrode of MOS transistors. In: Proceedings of the IEEE Lester Eastman Conference, pp. 259–264 (2002)Google Scholar
  57. 57.
    Busse, S., Scheumann, V., Menges, B., Mittler, S.: Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)CrossRefGoogle Scholar
  58. 58.
    Densmore, A., Xu, D.-X., Janz, S., Waldron, P., Mischki, T., Lopinski, G., Delâge, A., Lapointe, J., Cheben, P., Lamontagne, B.: Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)CrossRefGoogle Scholar
  59. 59.
    Makarona, E., Kapetanakis, E., Velessiotis, D., Douvas, A., Argitis, P., Normand, P., Gotszalk, T., Woszczyna, M., Glezos, N.: Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectron. Eng. 85(5), 1399–1402 (2008)CrossRefGoogle Scholar
  60. 60.
    Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703 (2012)CrossRefGoogle Scholar
  61. 61.
    Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)CrossRefGoogle Scholar
  62. 62.
    Jang, D.Y., Kim, Y.P., Kim, H.S., Park, S.H.K., Choi, S.Y., Choi, Y.K.: Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. B 25(2), 443–447 (2007)CrossRefGoogle Scholar
  63. 63.
    Kim, S., Kim, J.Y., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Appl. Phys. Lett. 97, 053702 (2010)CrossRefGoogle Scholar
  64. 64.
    Singh, D., Pandey, S., Nigam, K., Sharma, D., Yadav, D.S., Kondekar, P.: A Charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans. Electron Devices 64(1), 271–278 (2017)CrossRefGoogle Scholar
  65. 65.
    Young, K.K.: Short-channel effects in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRefGoogle Scholar
  66. 66.
    Razavi , P., Orouji, A.A.: Dual material gate oxide stack symmetric double gate MOSFET: improving short channel effects of nanoscale double gate MOSFET, In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008)Google Scholar
  67. 67.
    Kang, H., Han, J.W., Choi, Y.K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 927–930 (2008)CrossRefGoogle Scholar
  68. 68.
    Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-$ \(\backslash \) kappa $ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRefGoogle Scholar
  69. 69.
    Sharma, A., Jain, A., Pratap, Y., Gupta, R.S.: Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron. 123, 26–32 (2016)CrossRefGoogle Scholar
  70. 70.
    Rigante, S., Scarbolo, P., Wipf, M., Stoop, R.L., Bedner, K., Buitrago, E., Bazigos, A., et al.: Sensing with Advanced computing technology: fin field-effect transistors with high-k gate stack on bulk silicon. ACS Nano 9(5), 4872–4881 (2015)CrossRefGoogle Scholar
  71. 71.
    Yan, R., Lynch, D., Cayron, T., Lederer, D., Afzalian, A., Lee, C.-W., et al.: Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations. Solid State Electron 52(12), 1872–1876 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.ECE DepartmentBengal Institute of Technology and ManagementBolpurIndia
  2. 2.ECE DepartmentKalyani Government Engineering CollegeKalyaniIndia

Personalised recommendations