Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1255–1262 | Cite as

First-principle calculations of electronic and ferromagnetic properties of \(\hbox {Al}_{1-x}\hbox {V}_{x}\hbox {Sb}\)

  • Asmaa Zerouali
  • Allel Mokaddem
  • Bendouma Doumi
  • Fethallah Dahmane
  • Mohammed Elkeurti
  • Adlane Sayede
  • Abdelkader Tadjer
Article

Abstract

We have used the first-principle calculations of density functional theory within full-potential linearized augmented plane-wave method to investigate the electronic and ferromagnetic properties of \(\hbox {Al}_{1-x}\hbox {V}_{x}\hbox {Sb}\) alloys. The electronic structures of \(\hbox {Al}_{0.25}\hbox {V}_{0.75}\hbox {Sb}, \hbox {Al}_{0.5}\hbox {V}_{0.5}\hbox {Sb}\) and \(\hbox {Al}_{0.75}\hbox {V}_{0.25}\hbox {Sb}\) exhibit a half-metallic ferromagnetic character with spin polarization of 100 %. The total magnetic moment per V atom for each compound is integral Bohr magneton of 2 \(\mu _{\mathrm{B}}\), confirming the half-metallic feature of \(\hbox {Al}_{1-x}\hbox {V}_{x}\hbox {Sb}\). Therefore, these materials are half-metallic ferromagnets useful for possible spintronics applications.

Keywords

\(\hbox {Al}_{1-x}\hbox {V}_{x}\hbox {Sb}\) DFT Electronic structures Half-metallic Ferromagnetism 

References

  1. 1.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)CrossRefGoogle Scholar
  2. 2.
    Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
  3. 3.
    Miah, M.I.: Generation and detection of spin current in semiconductors: semiconductor spintronics. Mater. Today 2, 5111–5116 (2015)CrossRefGoogle Scholar
  4. 4.
    Han, W.: Perspectives for spintronics in 2D materials. APL Mater. 4, 032401–032409 (2016). (9pp)CrossRefGoogle Scholar
  5. 5.
    Sato, K., Katayama-Yoshida, H.: Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 40, L485–L487 (2001)CrossRefGoogle Scholar
  6. 6.
    Wu, S.Y., Liu, H.X., Gu, L., Singh, R.K., Budd, L., van Schilfgaarde, M., McCartney, M.R., Smith, D.J., Newman, N.: Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films. Appl. Phys. Lett. 82, 3047–3049 (2003)CrossRefGoogle Scholar
  7. 7.
    Doumi, B., Tadjer, A., Dahmane, F., Djedid, A., Yakoubi, A., Barkat, Y., Ould Kada, M., Sayede, A., Hamada, L.: First-principles investigation of half-metallic ferromagnetism in V-doped BeS, BeSe, and BeTe. J. Supercond. Nov. Magn. 27, 293–300 (2014)CrossRefGoogle Scholar
  8. 8.
    Mokaddem, A., Doumi, B., Sayede, A., Bensaid, D., Tadjer, A., Boutaleb, M.: Investigations of electronic structure and half-metallic ferromagnets in Cr-doped zinc-blende BeS semiconductor. J. Supercond. Nov. Magn. 28, 157–164 (2015)CrossRefGoogle Scholar
  9. 9.
    Rajamanickam, N., Rajashabala, S., Ramachandran, K.: Effect of Mn-doping on the structural, morphological and optical properties of ZnO nanorods. Superlattices Microstruct. 65, 240–247 (2014)CrossRefGoogle Scholar
  10. 10.
    Rajendar, V., Dayakar, T., Shobhan, K., Srikanth, I., Venkateswara Rao, K.: Systematic approach on the fabrication of Co doped ZnO semiconducting nanoparticles by mixture of fuel approach for Antibacterial applications. Superlattices Microstruct. 75, 551–563 (2014)CrossRefGoogle Scholar
  11. 11.
    Singh, J., Verma, N.K.: Correlation between structure and ferromagnetism in cobalt-doped CdSe nanorods. J. Supercond. Nov. Magn. 27, 2371–2377 (2014)CrossRefGoogle Scholar
  12. 12.
    Doumi, B., Mokaddem, A., Sayede, A., Dahmane, F., Mogulkoc, Y., Tadjer, A.: First-principles investigations on ferromagnetic behaviour of \(\text{ Be }_{1-x}\text{ V }_{x}\text{ Z }\) (Z = S, Se and Te) (\(x = 0.25\)). Superlattices Microstruct. 88, 139–149 (2015)CrossRefGoogle Scholar
  13. 13.
    Kaur, P., Kumar, S., Singh, A., Chen, C.L., Dong, C.L., Chan, T.S., Lee, K.P., Srivastava, C., Rao, S.M., Wu, M.K.: Investigations on doping induced changes in structural, electronic structure and magnetic behavior of spintronic Cr-ZnS nanoparticles. Superlattices Microstruct. 83, 785–795 (2015)CrossRefGoogle Scholar
  14. 14.
    Boutaleb, M., Doumi, B., Sayede, A., Tadjer, A., Mokaddem, A.: Theoretical predictions of electronic structure and half-metallic ferromagnetism in \(\text{ Al }_{1-x}\text{ Mn }_{x}\)P diluted magnetic semiconductors. J. Supercond. Nov. Magn. 28, 143–150 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, S.F., Chen, L.Y., Zhang, T., Song, Y.L.: Half-metallic ferromagnetism in Cu-doped ZnO nanostructures from first-principle prediction. J. Supercond. Nov. Magn. 28, 2033–2038 (2015)CrossRefGoogle Scholar
  16. 16.
    Doumi, B., Mokaddem, A., Ishak-Boushaki, M., Bensaid, D.: First-principle investigation of magnetic and electronic properties of vanadium- and chromium-doped cubic aluminum phosphide. Sci. Semicond. Process. 32, 166–171 (2015)CrossRefGoogle Scholar
  17. 17.
    Shayesteh, S.F., Nosrati, R.: The structural and magnetic properties of diluted magnetic semiconductor \(\text{ Zn }_{1-x}\text{ Ni }_{x}\)O nanoparticles. J. Supercond. Nov. Magn. 28, 1821–1826 (2015)CrossRefGoogle Scholar
  18. 18.
    Doumi, B., Mokaddem, A., Dahmane, F., Sayede, A., Tadjer, A.: A novel theoretical design of electronic structure and half-metallic ferromagnetism in the 3d (V)-doped rock-salts SrS, SrSe, and SrTe for spintronics. RSC Adv. 112, 92328–92334 (2015)CrossRefGoogle Scholar
  19. 19.
    Saini, H.S., Kashyap, M.K., Kumar, M., Thakur, J., Singh, M., Reshak, A.H., Saini, G.S.S.: Generating magnetic response and half-metallicity in GaP via dilute Ti-doping for spintronic applications. J. Alloy Compd. 649, 184–189 (2015)CrossRefGoogle Scholar
  20. 20.
    Doumi, B., Mokaddem, A., Temimi, L., Beldjoudi, N., Elkeurti, M., Dahmane, F., Sayede, A., Tadjer, A., Ishak-Boushaki, M.: First-principle investigation of half-metallic ferromagnetism in octahedrally bonded Cr-doped rock-salt SrS, SrSe, and SrTe. Eur. Phys. J. B 88, 93–109 (2015). (9pp)CrossRefGoogle Scholar
  21. 21.
    Kervan, S., Kervan, N.: First-principles study on half-metallic ferromagnetism in the diluted magnetic semiconductor (DMS) \(\text{ Al }_{1-x}\text{ Mn }_{x}\)P compounds. J. Magn. Magn. Mater. 382, 63–70 (2015)CrossRefGoogle Scholar
  22. 22.
    Boutaleb, M., Doumi, B., Sayede, A., Tadjer, A.: Half-metallic ferromagnetic properties of Cr- and V-doped AlP semiconductors. J. Magn. Magn. Mater. 397, 132–138 (2016)CrossRefGoogle Scholar
  23. 23.
    Mahmood, Q., Alay-e-Abbas, S.M., Yaseen, M., Mahmood, A., Rashid, M., Noor, N.A.: Theoretical investigation of half-metallic ferromagnetism in \(\text{ Mg }_{0.75}\text{ Ti }_{0.25}\text{ Y }\) (Y = S, Se, Te) alloys by using DFT-mBJ studies. J. Supercond. 29, 1387–1397 (2016)CrossRefGoogle Scholar
  24. 24.
    Das, S., Ghosh, B., Hussain, S., Bhar, R., Pal, A.K.: Pulsed laser deposition: a viable route for the growth of aluminum antimonide film. J. Cryst. Growth 419, 12–19 (2015)CrossRefGoogle Scholar
  25. 25.
    Nilsen, T.A., Patra, S.K., Breivik, M., Fimland, B.O.: Thermal dependence of the lattice constant and the Poisson ratio of AlSb above room temperature. J. Cryst. Growth 336, 29–31 (2011)CrossRefGoogle Scholar
  26. 26.
    Rahman, G., Cho, S., Hong, S.C.: Half metallic ferromagnetism of Mn doped AlSb: a first principles study. Phys. Stat. Sol. (b) 244, 4435–4438 (2007)CrossRefGoogle Scholar
  27. 27.
    Saeed, Y., Shaukat, A., Nazir, S., Ikram, N., Reshak, A.H.: First principles calculations of electronic structure and magnetic properties of Cr-based magnetic semiconductors \(\text{ Al }_{1-x}\text{ Cr }_{x}X\) (\(X = \text{ N, } \text{ P, } \text{ As, } \text{ Sb }\)). J. Solid State Chem. 183, 242–249 (2010)CrossRefGoogle Scholar
  28. 28.
    Katayama-Yoshida, H., Sato, K.: Materials design for semiconductor spintronics by ab initio electronic-structure calculation. Physica B 327, 337–343 (2003)CrossRefGoogle Scholar
  29. 29.
    Katayama-Yoshida, H., Sato, K.: Spin and charge control method of ternary II-VI and III-V magnetic semiconductors for spintronics: theory vs. experiment. J. Phys. Chem. Solids 64, 1447–1452 (2003)CrossRefGoogle Scholar
  30. 30.
    Anh, L.D., Kaneko, D., Hai, P.N., Tanaka, M.: Growth and characterization of insulating ferromagnetic semiconductor (Al, Fe)Sb. Appl. Phys. Lett. 107, 232405 (2015)CrossRefGoogle Scholar
  31. 31.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–871 (1964)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–1138 (1965)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: In: Schwarz, K. (ed.) WIEN 2K, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Technische Universität Wien, Wien (2001)Google Scholar
  34. 34.
    Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116–235126 (2006). (6pp)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sharma, S., Verma, A.S., Bhandari, R., Kumari, S., Jindal, V.K.: First principles study of the structural, electronic, optical, elastic and thermodynamic properties of \(\text{ CdXAs }_{2}\) (X = Si, Ge and Sn). Mater. Sci. Semicond. Process 27, 79–96 (2014)CrossRefGoogle Scholar
  36. 36.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillonin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pack, J.D., Monkhorst, H.J.: “Special points for Brillonln-zone integrations”-a reply. Phys. Rev. B 16, 1748–1749 (1977)CrossRefGoogle Scholar
  38. 38.
    Muranghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kacimi, S., Mehnane, H., Zaoui, A.: I-II-V and I-III-IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. J. Alloy Compd. 587, 451–458 (2014)CrossRefGoogle Scholar
  40. 40.
    Caro, M.A., Schulz, S., O’Reilly, E.P.: Origin of nonlinear piezoelectricity in III-V semiconductors: internal strain and bond ionicity from hybrid-functional density functional theory. Phys. Rev. B 91, 075203–075209 (2015)CrossRefGoogle Scholar
  41. 41.
    Adachi, S.: Properties of Group-IV. III-V and II-VI Semiconductors. Wiley, New York (2009)Google Scholar
  42. 42.
    Madelung, O.: Semiconductors: Data Handbook, 3rd edn. Springer, Berlin (2004)CrossRefGoogle Scholar
  43. 43.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  44. 44.
    Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)CrossRefGoogle Scholar
  45. 45.
    Heyd, J., Scuseria, G.E.: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004)CrossRefGoogle Scholar
  46. 46.
    Sajjad, M., Manzoor, S., Zhang, H.X., Noor, N.A., Alay-e-Abbas, S.M., Shaukat, A., Khenata, R.: The half-metallic ferromagnetism character in \(\text{ Be }_{1-x}\text{ V }_{x}\text{ Y }\) (Y = Se and Te) alloys: An ab-initio study. J. Magn. Magn. Mater. 379, 63–73 (2015)CrossRefGoogle Scholar
  47. 47.
    Doumi, B., Mokaddem, A., Sayede, A., Boutaleb, M., Tadjer, A., Dahmane, F.: Half-metallic ferromagnetic property related to spintronic applications in 3d (V, Cr, and Mn)-doped GaP DMSs. J. Supercond. Novel Magn. 28, 3163–3172 (2015)CrossRefGoogle Scholar
  48. 48.
    Cherfi, Y., Mokaddem, A., Bensaid, D., Doumi, B., Sayede, A., Dahmane, F., Tadjer, A.: A novel theoretical investigation of electronic structure and half-metallic ferromagnetism in 3d (V)-doped InP for spintronic applications. J. Supercond. Novel Magn. 29, 1813–1819 (2016)CrossRefGoogle Scholar
  49. 49.
    Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)CrossRefGoogle Scholar
  50. 50.
    Sato, K., Dederichs, P.H., Araki, K., Katayama-Yoshida, H.: Ab initio materials design and Curie temperature of GaN-based ferromagnetic semiconductors. Phys. Status Solidi C 7, 2855–2859 (2003)CrossRefGoogle Scholar
  51. 51.
    Sato, K., Katayama-Yoshida, H., Dederichs, P.H.: Curie temperatures of III-V diluted magnetic semiconductors calculated from first-principles in mean field approximation. J. Supercond. 16, 31–35 (2003)CrossRefGoogle Scholar
  52. 52.
    Akai, H.: Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys. Rev. Lett. 81, 3002–3005 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Asmaa Zerouali
    • 1
  • Allel Mokaddem
    • 2
  • Bendouma Doumi
    • 3
  • Fethallah Dahmane
    • 4
  • Mohammed Elkeurti
    • 1
  • Adlane Sayede
    • 5
  • Abdelkader Tadjer
    • 6
  1. 1.Laboratoire des Etudes Physico-ChimiquesUniversité de SaïdaSaidaAlgeria
  2. 2.Department of Materials and Components, Faculty of PhysicsU.S.T.H.B.AlgiersAlgeria
  3. 3.Department of Physics, Faculty of SciencesDr. Tahar Moulay University of SaïdaSaidaAlgeria
  4. 4.Département Sciences de la Matière, Institut des Sciences et TechnologiesCentre Universitaire TissemsiltTissemsiltAlgeria
  5. 5.Unité de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Faculté des Sciences, Université d’ArtoisLensFrance
  6. 6.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel-AbbésAlgeria

Personalised recommendations