Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1269–1274 | Cite as

Numerical analysis of transmission coefficient, LDOS, and DOS in superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) resonant tunneling MODFETs

  • D. BouguennaEmail author
  • T. Wecker
  • D. J. As
  • N. Kermas
  • A. Beloufa
Article
  • 125 Downloads

Abstract

Numerical analysis of the transmission coefficient, local density of states, and density of states in superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) resonant tunneling modulation-doped field-effect transistors (MODFETs) using \(\hbox {next}{} \mathbf{nano}^{3}\) software and the contact block reduction method is presented. This method is a variant of non-equilibrium Green’s function formalism, which has been integrated into the \(\hbox {next}\mathbf{nano}^{3}\) software package. Using this formalism in order to model any quantum devices and estimate their charge profiles by computing transmission coefficient, local density of states (LDOS) and density of states (DOS). This formalism can also be used to describe the quantum transport limit in ballistic devices very efficiently. In particular, we investigated the influences of the aluminum mole fraction and the thickness and width of the cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N}\) on the transmission coefficient. The results of this work show that, for narrow width of 5 nm and low Al mole fraction of \(x = 20\,\%\) of barrier layers, cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) superlattice nanostructures with very high density of states of 407 \(\hbox {eV}^{-1}\) at the resonance energy are preferred to achieve the maximum transmission coefficient. We also calculated the local density of states of superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) to resolve the apparent contradiction between the structure and manufacturability of new-generation resonant tunneling MODFET devices for terahertz and high-power applications.

Keywords

Transmission coefficient Density of states Local density of states Cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) Superlattice Nanostructures MODFETs nextnano\(^{3}\) 

Notes

Acknowledgments

This work is the result of a joint collaboration between the groups of Physics and Technology of Optoelectronic Semiconductors at the University of Paderborn, Germany and the Laboratory of Materials, Applications and Environment at the University Mustapha Stambouli of Mascara, Algeria. T.W. and D.J.As. acknowledge financial support by the German Science Foundation (DFG).

References

  1. 1.
    Zado, A., Tschumak, E., Lischka, K., As, D.J.: Electrical characterization of an interface n-type conduction channel in cubic GaN/AlGaN heterostructures. Phys. Status Solidi C 7(1), 52–55 (2010)CrossRefGoogle Scholar
  2. 2.
    Wecker, T., Hörich, F., Feneberg, M., Goldhahn, R., Reuter, D., As, D.J.: Structural and optical properties of MBE-grown asymmetric cubic \(\text{ GaN/Al }_{x}\text{ Ga }_{1-x}\text{ N }\) double quantum wells. Phys. Status Solidi B 252(5), 873–878 (2015)CrossRefGoogle Scholar
  3. 3.
    Gangwani, P., Pandey, S., Haldar, S., Gupta, M., Gupta, R.S.: Polarization dependent analysis of AlGaN/GaN HEMT for high power applications. Solid-state Electron. 51(1), 130–135 (2007)CrossRefGoogle Scholar
  4. 4.
    Bouguenna, Driss, Boudghene Stambouli, A., Mekkakia Maaza, N., Zado, A., As, D.J.: Comparative study on performance of cubic AlGaN/GaN nanostructures MODFETs and MOS-MODFETs. Superlattices Microstruct. 62, 260–268 (2013)CrossRefGoogle Scholar
  5. 5.
    Eller, Brianna S., Yang, Jialing, Nemanich, Robert J.: Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 31(5), 1–29 (2013)CrossRefGoogle Scholar
  6. 6.
    Rajan, S., Waltereit, P., Poblenz, C., Heikman, S.J., Green, D.S., Speck, J.S., Mishra, U.K.: Power performance of AlGaN/GaN HEMTs grown on SiC by plasma-assisted MBE. IEEE Electron Dev. Lett. 25, 247–249 (2004)CrossRefGoogle Scholar
  7. 7.
    Haffouz, S., Tang, H., Bardwell, J.A., Hsu, E.M., Webb, J.B., Rolfe, S.: AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy. Solid-state Electron. 49(5), 802–807 (2005)CrossRefGoogle Scholar
  8. 8.
    Choi, Y.C., Shi, J., Pophristic, M., Spencer, M.G., Eastman, L.F.: C-doped semi-insulating GaN HFETs on sapphire substrates with a high breakdown voltage and low specific on-resistance. J. Vac. Sci. Technol. B 25(6), 1836–1842 (2007)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J.P., Haddad, G.I.: Digital circuit applications of resonant tunneling devices. Proc IEEE 86(4), 664–686 (1998)Google Scholar
  11. 11.
    Haddad, G.I., Reddy, U.K., Sun, J.P., Mains, R.K.: The bound-state resonant tunneling transistor (BSRTT): fabrication, DC, I-V characteristics and high-frequency properties. Superlattices Microstruct. 7(4), 369–374 (1990)Google Scholar
  12. 12.
    Brown, E.R., Soilner, T.C.L.G., Parker, C.D., Goodhue, W.D., Chen, C.L.: Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl. Phys. Lett. 55(17), 1777 (1989)CrossRefGoogle Scholar
  13. 13.
    Lunardi, L.M., Sen, S., Capasso, F., Smith, P.R., Sivco, D.L., Cho, A.Y.: Microwave multiple-state resonant tunneling bipolar transistors. IEEE Electron Dev. Lett. 10(5), 219–221 (1989)CrossRefGoogle Scholar
  14. 14.
    Capasso, F., Sen, S., Beltram, F., Lunardi, L.M., Vengurlekar, A.S., Smith, P.R., Shah, N.J., Malik, R.J., Cho, A.Y.: Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic. IEEE Trans. Electron Dev. 36(10), 2065–2082 (1989)CrossRefGoogle Scholar
  15. 15.
    Capasso, F., Mohammed, K., Cho, A.Y.: Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J. Quantum Electron. 22(9), 1853–1869 (1986)CrossRefGoogle Scholar
  16. 16.
    Chou, S.Y., Allee, D.R., Pease, R.F., Harris, J.S.: Lateral resonant tunneling transistors employing field-induced quantum wells and barriers. Proc IEEE 79(8), 1131–1139 (1991)CrossRefGoogle Scholar
  17. 17.
    Woodward, T.K., McGill, T.C., Burhham, R.D., Chung, H.F.: Resonant tunneling field-effect transistors. Superlatticce Microstruct. 4(1), 1–9 (1989)CrossRefGoogle Scholar
  18. 18.
    Talele, K., Patil, D.S.: Analysis of wave function, energy and transmission coefficients in GaN/AlGaN susperlatice nanostructures. Prog. Electromagn. Res. 81, 237–252 (2008)CrossRefGoogle Scholar
  19. 19.
    Birner, S., Schindler, C., Greck, P., Sabathil, M., Vogl, P.: Ballistic quantum transport using the contact block reduction (CBR) method. J. Comput. Electron. 8(3–4), 267–286 (2009)CrossRefGoogle Scholar
  20. 20.
    Mazumdar, Kaushik, Hussain, Saddam, Singh, Vishwanath Pratap, Ghosal, Aniruddha: Tunneling effect in double barrier nitride (AlGaN/GaN) heterostructures at very low tempetarure. Sci. Int. 27(2), 1017–1019 (2015)Google Scholar
  21. 21.
    Lee, Chomsik: Resonant tunneling transistor characteristics using a Fabry–Perot resonator. J. Korean Phys. Soc. 31(1), 112–116 (1997)Google Scholar
  22. 22.
    Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P.: Nextnano: general purpose 3-D simulations. IEEE Trans. Electron Dev. 54(9), 2137–2142 (2007)CrossRefGoogle Scholar
  23. 23.
    Hong, H., Shin, M., Vasileska, D., Klimeck, G., Klimeck, G.: Feasibility, accuracy, and performance of contact block reduction method for multi-band simulations of ballistic quantum transport. J. Appl. Phys. 111(6), 063705 (2012)CrossRefGoogle Scholar
  24. 24.
    Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Contact block reduction method for ballistic transport and carrier densities of open nanostructures. Phys. Rev. B 71(24), 245–321 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. Bouguenna
    • 1
    • 2
    Email author
  • T. Wecker
    • 3
  • D. J. As
    • 3
  • N. Kermas
    • 4
  • A. Beloufa
    • 1
  1. 1.Laboratory of Materials, Applications and Environment, Department of Technical Sciences, Faculty of TechnologyUniversity Mustapha Stambouli of MascaraMascaraAlgeria
  2. 2.Département de l’Électronique, Faculté de Génie ÉlectriqueUniversité des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MBOranAlgeria
  3. 3.Department of PhysicsUniversity of PaderbornPaderbornGermany
  4. 4.Laboratory of Modelization and Calculation Methods, Department of ElectronicUniversity Dr Moulay Tahar of SaidaSaidaAlgeria

Personalised recommendations