Journal of Computational Electronics

, Volume 15, Issue 4, pp 1192–1205 | Cite as

Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix



We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green’s functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significant fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. We also show that the current density and subband occupations relax toward their steady-state values on very different time scales.


QCL Superlattice Quantum transport Dissipation Density matrix Phonons Terahertz 



The authors gratefully acknowledge the support provided by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering, Physical Behavior of Materials Program, Award No. DE-SC0008712. The work was performed using the resources of the UW-Madison Center for High Throughput Computing (CHTC).


  1. 1.
    Faist, J., et al.: Quantum cascade laser. Science 264, 553 (1994)CrossRefGoogle Scholar
  2. 2.
    Dupont, E., Fathololoumi, S., Liu, H.: Simplified density-matrix model applied to three-well terahertz quantum cascade lasers. Phys. Rev. B 81, 205311 (2010)CrossRefGoogle Scholar
  3. 3.
    Jirauschek, C., Kubis, T.: Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 1, 011307 (2014)CrossRefGoogle Scholar
  4. 4.
    Iotti, R., Rossi, F.: Nature of charge transport in quantum-cascade lasers. Phys. Rev. Lett. 87, 146603 (2001)CrossRefGoogle Scholar
  5. 5.
    Callebaut, H., et al.: Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett. 84, 5, 645 (2004)CrossRefGoogle Scholar
  6. 6.
    Gao, X., Botez, D., Knezevic, I.: X-valley leakage in gaas-based midinfrared quantum cascade lasers: a monte carlo study. J. Appl. Phys. 101, 6, 063101 (2007)Google Scholar
  7. 7.
    Shi, Y.B., Knezevic, I.: Nonequilibrium phonon effects in midinfrared quantum cascade lasers. J. Appl. Phys. 116, 12, 123105 (2014)Google Scholar
  8. 8.
    Willenberg, H., Döhler, G.H., Faist, J.: Intersubband gain in a bloch oscillator and quantum cascade laser. Phys. Rev. B 67, 085315 (2003)CrossRefGoogle Scholar
  9. 9.
    Kumar, S., Hu, Q.: Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers. Phys. Rev. B 80, 245316 (2009)Google Scholar
  10. 10.
    Weber, C., Wacker, A., Knorr, A.: Density-matrix theory of the optical dynamics and transport in quantum cascade structures: the role of coherence. Phys. Rev. B 79, 165322 (2009)CrossRefGoogle Scholar
  11. 11.
    Terazzi, R., Faist, J.: A density matrix model of transport and radiation in quantum cascade lasers. N. J. Phys. 12, 3, 033045 (2010)CrossRefGoogle Scholar
  12. 12.
    Lee, S.-C., Wacker, A.: Nonequilibrium green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002)CrossRefGoogle Scholar
  13. 13.
    Callebaut, H., Hu, Q.: Importance of coherence for electron transport in terahertz quantum cascade lasers. J. Appl. Phys. 98, 10, 104505 (2005)CrossRefGoogle Scholar
  14. 14.
    Dupont, E., et al.: A phonon scattering assisted injection and extraction based terahertz quantum cascade laser. J. Appl. Phys. 111, 7, 073111 (2012)CrossRefGoogle Scholar
  15. 15.
    Lindskog, M., et al.: Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium green’s functions. Appl. Phys. Lett. 105, 10, 103106 (2014)CrossRefGoogle Scholar
  16. 16.
    Harrison, P., Indjin, D.: Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers. J. Appl. Phys. 92, 11, 6921 (2002)Google Scholar
  17. 17.
    Frohlich, H.: Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Lond. A 160, 220 (1937)CrossRefGoogle Scholar
  18. 18.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  19. 19.
    Knezevic, I., Novakovic, B.: Time-dependent transport in open systems based on quantum master equations. J. Comput. Electron. 12, 3, 363 (2013)CrossRefGoogle Scholar
  20. 20.
    Kohn, W., Luttinger, J.M.: Quantum theory of electrical transport phenomena. Phys. Rev. 108, 590 (1957)Google Scholar
  21. 21.
    Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901 (1999)CrossRefGoogle Scholar
  22. 22.
    Karimi, F., Davoody, A.H., Knezevic, I.: Dielectric function and plasmons in graphene: a self-consistent-field calculation within a Markovian master equation formalism. Phys. Rev. B 93, 205421 (2016)CrossRefGoogle Scholar
  23. 23.
    Mutze, U.: An asynchronous leapfrog method ii (2013) (Unpublished). arXiv:1311.6602
  24. 24.
    Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 1, 1 (2002). (ISSN 0370-1573) CrossRefMATHGoogle Scholar
  25. 25.
    Moiseyev, N.: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302, 5-6, 212 (1998). (ISSN 0370-1573) CrossRefGoogle Scholar
  26. 26.
    Ferry, D.K.: Semiconductors. IOP Publishing, Bristol (2013). (ISBN 978-0-750-31044-4) CrossRefGoogle Scholar
  27. 27.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Vienna (1989)CrossRefGoogle Scholar
  28. 28.
    Iotti, R., Ciancio, E., Rossi, F.: Quantum transport theory for semiconductor nanostructures: a density-matrix formulation. Phys. Rev. B 72, 125347 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations