Journal of Computational Electronics

, Volume 15, Issue 3, pp 1064–1070 | Cite as

An optical absorption model including absorber saturation

  • Matthias Auf der Maur
  • Desiree Gentilini
  • Aldo Di Carlo
  • Seung-Il Cha
  • Dong Yoon Lee


Usually, the calculation of the optical generation in solar cell simulations is based on the assumption of constant absorption coefficients. Under certain circumstances, however, the absorption coefficient may depend on the light intensity, for example, if the absorbing material suffers from optical saturation. In this work, we present a simple model taking into account a saturable absorber, which can be easily implemented in standard optical simulation models.


Optical absorption Dye solar cells Dye saturation Beer–Lambert Simulation 


Conflict of interest

The authors declare to have no conflict of interest.


  1. 1.
    Jennings, J.R., Liu, Y., Wang, Q.: Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration. J. Phys. Chem. C 115(30), 15109–15120 (2011). doi: 10.1021/jp2053053 CrossRefGoogle Scholar
  2. 2.
    Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)CrossRefGoogle Scholar
  3. 3.
    Listorti, A., ORegan, B., Durrant, J.R.: Electron transfer dynamics in dye-sensitized solar cells. Chem. Mater. 23(15), 3381–3399 (2011). doi: 10.1021/cm200651e CrossRefGoogle Scholar
  4. 4.
    Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)CrossRefGoogle Scholar
  5. 5.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1998)zbMATHGoogle Scholar
  6. 6.
    Pettersson, L.A.A., Roman, L.S., Inganäs, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86(1), 487 (1999). doi: 10.1063/1.370757 CrossRefGoogle Scholar
  7. 7.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Calogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., Bonaccorso, F.: Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 44, 3244–3294 (2015)CrossRefGoogle Scholar
  9. 9.
    Tétreault, N., Heiniger, L.P., Stefik, M., Labouchère, P.L., Arsenault, E., Nazeeruddin, N.K., Ozin, G.A., Grätzel, M.: Atomic layer deposition for novel dye-sensitized solar cells. ECS Trans. 41(2), 303–314 (2011). doi: 10.1149/1.3633681 CrossRefGoogle Scholar
  10. 10.
    Nelson, J.J., Amick, T.J., Elliott, C.M.: Mass transport of polypyridyl cobalt complexes in dye-sensitized solar cells with mesoporous TiO\({_2}\) photoanodes. J. Phys. Chem. C 112(46), 18255–18263 (2008). doi: 10.1021/jp806479k CrossRefGoogle Scholar
  11. 11.
    Sogabe, T., Shoji, Y., Ohba, M., Yoshida, K., Tamaki, R., Hong, H.F., Wu, C.H., Kuo, C.T., Tomi, S., Okada, Y.: Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules. Sci. Rep. 4, 4792 (2014). doi: 10.1038/srep04792
  12. 12.
    Tomic, S.: Intermediate-band solar cells: influence of band formation on dynamical processes in inas/gaas quantum dot arrays. Phys. Rev. B 82(19), 195321 (2010). doi: 10.1103/PhysRevB.82.195321 CrossRefGoogle Scholar
  13. 13.
    Wille, H.B.: Funktionalanalysis und Partielle Differentialgleichungen, Höhere Mathematik für Ingegnieure. B. G. Teubner, Stuttgart (1998)Google Scholar
  14. 14.
    Adams, R.A., Fournier, J.J.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140, 2nd edn. Academic Press, Cambridge, MA (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electronic EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Advanced Materials and Application Research DivisionKorea Electrotechnology Research InstituteChangwonRepublic of Korea

Personalised recommendations